검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 40

        2.
        2024.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon fibers (CFs) with different tensile moduli of 280–384 GPa were applied to investigate the relationship between crystalline structure and compressive failure. The carbon chemical structure and crystalline structure were studied by Raman, highresolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The correlation between compressive strength and crystalline structure was investigated. The results showed that the transition point between medium and high tensile modulus was around 310 GPa, and within the range of medium modulus, the compressive strength of CFs improved with the increase of tensile modulus, and the compressive strength also improved with the increase of crystal thickness Lc, crystal width La, and crystal plane orientation; In the high modulus range, the correlation law was opposite, which was mainly influenced by the grain boundary structure. CFs with tensile modulus lower than 310 GPa exhibited bucking and kinking fracture under compressive loading, while shear fracture was observed for CFs with tensile modulus higher than 310 GPa.
        4,000원
        3.
        2024.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We investigated the effects of supercritical-CO2 treatment on the pore structure and consequent H2 adsorption behavior of single-walled carbon nanohorns (SWCNHs) and SWCNH aggregates. High-resolution transmission electron microscopy and adsorption characterization techniques were employed to elucidate the alterations in the SWCNH morphology and aggregate pore characteristics induced by supercritical-CO2 treatment. Our results confirm that supercritical-CO2 treatment reduces the interstitial pore surface area and volume of SWCNH aggregates, notably affecting the adsorption of N2 (77 K), CO2 (273 K), and H2 (77 K) gasses. The interstitial porosity strongly depends on the supercritical-CO2 pressure. Supercritical-CO2 treatment softens the individual SWCNHs and opens the core of SWCNH aggregates, producing a partially orientated structure with interstitial ultramicropores. These nanopores are formed by the diffusion and intercalation of CO2 molecules during treatment. An increase in the amount of H2 adsorbed per interstitial micropore of the supercritically modified SWCNHs was observed. Moreover, the increase in the number and volume of ultramicropores enable the selective adsorption of H2 and CO2 molecules. This study reveals that supercritical-CO2 treatment can modulate the pore structure of SWCNH aggregates and provides an effective strategy for tailoring the H2 adsorption properties of nanomaterials.
        4,000원
        4.
        2024.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Oxygen-rich porous carbon is of great interest for energy storage applications due to its improved local electronic structures compared with unmodified porous carbon. However, a tunable method for the preparation of oxygen-rich porous carbon with a special microstructure is still worth developing. Herein, a novel modification of porous carbon with different microstructures is facilely prepared via low-temperature solvothermal and KOH activation methods that employ the coal tar and eight substances, such as cellulose as carbon source and modifier, respectively. By testing the yield, surface group structure, lattice structures, morphology, thermal weight loss, and specific capacitance of carbonaceous mesophase, cellulose–hydrochloric acid is identified as the additive for the preparation of oxygen-rich coal tar-based porous carbon. The obtained porous carbon displays a specific surface area of up to 859.49 m2 g− 1 and an average pore diameter of 2.39 nm. More importantly, the material delivers a high capacity of 275.95 F g− 1 at 0.3 A g− 1 and maintains a high capacitance of 220 F g− 1 even at 10 A g− 1. When in a neutral electrolyte, it can still retain a reversible capacity of 236.72 F g− 1 at 0.3 A g− 1 and 136.79 F g− 1 at 10 A g− 1. This work may provide insight into the design of carbon anode materials with high specific capacity.
        4,500원
        5.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cellulose has experienced a renaissance as a precursor for carbon fibers (CFs). However, cellulose possesses intrinsic challenges as precursor substrate such as typically low carbon yield. This study examines the interplay of strategies to increase the carbonization yield of (ligno-) cellulosic fibers manufactured via a coagulation process. Using Design of Experiments, this article assesses the individual and combined effects of diammonium hydrogen phosphate (DAP), lignin, and CO2 activation on the carbonization yield and properties of cellulose-based carbon fibers. Synergistic effects are identified using the response surface methodology. This paper evidences that DAP and lignin could affect cellulose pyrolysis positively in terms of carbonization yield. Nevertheless, DAP and lignin do not have an additive effect on increasing the yield. In fact, combined DAP and lignin can affect negatively the carbonization yield within a certain composition range. Further, the thermogravimetric CO2 adsorption of the respective CFs was measured, showing relatively high values (ca. 2 mmol/g) at unsaturated pressure conditions. The CFs were microporous materials with potential applications in gas separation membranes and CO2 storage systems.
        4,500원
        6.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Reliable, inexpensive, environment-friendly, and durable properties of carbon materials with unique and outstanding photoelectric performance is highly desired for myriad of applications such as catalysis and energy storage. Since lattice modulation is a vital method of surface modification of materials, which form by an external force during the synthesis process, causing the internal compression and stretching, leading to lattice sliding event. In this review, we present a summary of different methods to tailor the lattice modulation in 2D carbon-based materials, including grain/twin boundary, lattice strain, lattice distortion, and lattice defects. This overview highlights the implication control of the diverse morphologies of nanocrystals and how to tailor the materials properties without adding any polymers. The improvement in the performance of 2D carbon materials ranges from the enhancement of charge transport and conductivity, structural stability, high-performance of light absorption capacity, and efficient selectivity promote the future prospect of 2D carbon materials broaden their applications in terms of energy conversion and storage. Finally, some perspectives are proposed on the future developments and challenges on 2D carbon materials towards energy storage applications.
        4,200원
        7.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        강진은 적절한 내진 설계 기술이 적용되지 않으면 건물 붕괴로 인하여 극심한 피해가 발생할 수 있다. 이를 해결할 수 있는 면진 기술은 구조물과 지반 사이에 베어링 장치를 적용하여 지진 에너지를 흡수하고 건물에 전달되는 진동을 감쇠한 다. 본 연구는 고무 마찰 베어링 장치의 구조물 적용성을 검증하고 지진으로부터 안전성을 확보하기 위하여 고무 마찰 베어링 프레임 구조물에 대한 수치해석을 수행하였다. 수치해석 결과로써 최대 지붕 가속도와 총 밑면 전단력이 감소되어 내진 성능을 확인하였다. 또한, 최대 층간 변위 및 최대 잔류 층간 변위에 대한 분석 결과로 프레임 구조물을 경제적 복구 수준의 결과를 도 출하여 고무 마찰 베어링 장치의 우수한 내진 성능을 확인하였다.
        4,000원
        8.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Different materials have been shown to "catalyze" carbon nanotube (CNT) growth in chemical vapor deposition (CVD) when they become nano-sized particles. Catalysts, which act as a kind of "seed" for CNT growth, show two types of behavior in the CVD method; precipitation of carbon atoms from the eutectic alloy forming a kind of alloy with carbon; the fact that the catalyst remains as a solid phase and forms a carbon surface layer during the CVD process. This study examines the relationship between the iron-group and non-iron-group catalyst types and the catalyst concentration and growth time of CVD-based CNT growth via emphasizing growth mechanisms. The novelty of this work is to compare and evaluate the effects of catalyst type, concentration, and growth time, which are three critical CVD parameters, on the final nanotube morphology. It was utilized five different catalysts ( Fe2O3, Fe3O4, Nb2O5, Au, and Pt), three different growth durations (3, 5, and 7 min), and three different catalyst concentrations (2, 4, and 6 wt%) to explore the morphological differences on CNT synthesis by CVD under the same process parameters. The results demonstrated that catalyst type is the most influential parameter in CVD-based CNT synthesis, while catalyst concentration and growth time are indispensable elements for the uniformity and small diameter in the final morphology.
        4,800원
        10.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We report the behaviour of carbon black (CB) nanoparticles (spherical carbon shells), subjected to external pressure, using diamond anvil cell at synchrotron facility. CB nanoparticles have been synthesized by lamp black method using olive oil as combustion precursor and ferrocene as an organometallic additive. The catalyst-assisted CB has an iron oxide (γ-Fe2O3) core and amorphous carbon shell (i.e. core–shell structure). Our present study suggests that the carbon shells are partially transparent to the applied high pressure, and result in the reduction of effective pressure that gets transferred to the iron oxide core. High-pressure Raman spectroscopy results indicate that the surrounding carbon shells get compressed with pressure and this change is reversible. However, no structural transformation was observed till the highest applied pressure (25 GPa). The Raman spectroscopy results also suggests that the carbon shells are less pressure sensitive as their pressure coefficients (dω/dP) of G-peak were calculated (3.79 cm− 1/GPa) to be less than that for other carbon allotropes.
        4,000원
        11.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fluorescent carbon nano-materials with quantum confinement and edge effects have recently piqued attention in a variety of applications, including biological imaging, drug delivery, optoelectronics and sensing. These nano-materials can be synthesized from a variety of carbon-based precursors using both top-down and bottom-up methods. Coal and its derivatives typically include a vast crystalline network and condensed aromatic ring cluster, which can be easily exfoliated by chemical, electrochemical, or physical processes to produce nano-materials. As a result, they are regarded as a low-cost, abundant and efficient carbon source for the fabrication of high-yield nano-materials. Nano-materials synthesized from coal-based precursors have outstanding fluorescence, photostability, biocompatibility and low toxicity, among other properties. Their properties in optical sensors, LED devices, bio-imaging, and photo and electro-catalyst applications have already been investigated. In this review, we have highlighted current developments in the synthesis, structural properties and fluorescence properties of nano-materials synthesized from coal-based precursors.
        7,800원
        12.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Artificial graphites have been used in various applications, for example, as anode materials for Li-ion batteries, C/C composites, and electrodes for aluminum smelting, due to their unique mechanical strength and high thermal and electrical conductivity. Artificial graphites can be manufactured by a series of kneading, molding, carbonization and graphitization processes with an additional impregnation process. In this study, the influence of the process variables in the kneading and carbonization/graphitization process on the properties of the resulting carbon block was systemically investigated. During the kneading process, the optimum kneading temperature was 90 °C higher than the softening point of the binder pitch; thus, the binder pitch reached its maximum fluidity. On the other hand, during the carbonization and graphitization process, the structural properties of carbon blocks prepared at different heat treatment temperatures were examined and their structural change and evolution were closely described according to the temperature and divided into low-temperature carbonization and high-temperature carbonization/graphitization. Based on this study, we expect to provide a better understanding of setting the parameters for thermally conductive carbon block manufacturing.
        4,000원
        13.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Chlorella-derived activated carbon (CDAC) with a high specific surface area and hierarchical pore structure was prepared as a CO2 adsorbent and as a supercapacitor electrode material. During KOH activation of Chlorella-derived carbon, metallic K gas penetrated from the outer walls to the inner cells, and pores formed on the outer frame and the inner surface. Micropores were dominant in CDAC, contributing toward a high specific surface area (> 3500 m2/g) and a hierarchical pore structure owing to the cell walls. Consequently, CDAC exhibited a high CO2 adsorption capacity (13.41 mmol/g at 10 atm and room temperature) and afforded high specific capacitance (142 F/g) and rate capability (retention ratio: 91.5%) in supercapacitors. Compared with woody- and herbaceous-biomass-derived activated carbons, CDAC has a superior specific surface area when the precursors are used without any pretreatment under the same conditions due to their soft components such as lipids and proteins. Furthermore, developing microalgae into high-value-added products is beneficial from both economic and environmental perspectives.
        4,000원
        14.
        2019.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, quantitative analyses of food web structure based on carbon and nitrogen stable isotopes are widely applied to environmental assessments as well as ecological researches of various ecosystems, particularly rivers and streams. In the present study, we analyzed carbon and nitrogen stable isotope ratios of POM (both planktonic and attached forms), zooplankton, benthic macroinvertebrates and fish collected from 6 sites located at Nakdong River. Samples were collected from upstream areas of 5 weirs (Sangju, Gangjeong- Goryeong, Dalseong, Hapcheon-Changnyeong, and Changnyeong-Haman Weirs) and one downstream area of Hapcheon-Changnyeong Weir in dry season (June) and after rainy season (September). We suggested ranges of their carbon and nitrogen stable isotope ratios and calculated their trophic levels in the food web to compare their temporal and spatial variations. Trophic levels of organisms were relatively higher in Sangju Weir located at upper part of Nakdong River, and decreased thereafter. However, the trophic levels were recovered at the Changnyeong-Haman Weir, the lowest weir in the river. The trophic level calculated by nitrogen stable isotope ratios showed more reliable ranges when they were calculated based on zooplankton than POM used as baseline. The suggested quantitative ecological information of the majority of biological communities in Nakdong River would be helpful to understand the response of river food web to environmental disturbances and can be applied to various further researches regarding the quantitative approaches for the understanding food web structure and function of river ecosystems as well as restoration.
        4,800원
        15.
        2019.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Existing reinforced concrete frame buildings designed for only gravity loads have been seismically vulnerable due to their inadequate column detailing. The seismic vulnerabilities can be mitigated by the application of a column retrofit technique, which combines high-strength near surface mounted bars with a fiber reinforced polymer wrapping system. This study presents the full-scale shaker testing of a non-ductile frame structure retrofitted using the combined retrofit system. The full-scale dynamic testing was performed to measure realistic dynamic responses and to investigate the effectiveness of the retrofit system through the comparison of the measured responses between as-built and retrofitted test frames. Experimental results demonstrated that the retrofit system reduced the dynamic responses without any significant damage on the columns because it improved flexural, shear and lap-splice resisting capacities. In addition, the retrofit system contributed to changing a damage mechanism from a soft-story mechanism (column-sidesway mechanism) to a mixed-damage mechanism, which was commonly found in reinforced concrete buildings with strong-column weak-beam system.
        4,300원
        16.
        2018.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We fabricated a Li-S battery with post-treated carbon nanotube (CNT) films which offered better support for sulfur, and investigated the effect of the surface properties and pore structure of the post-treated CNT films on Li-S battery performance. Post-treatments, i.e., acid treatment, unzip process and cetyltrimethylammonium bromide (CTAB) treatment, effectively modified the surface properties and pore structure of the CNT film. The modified pore structure impacted the ability of the CNT films to accommodate the catholyte, resulting in an increase in initial discharge capacity.
        4,000원
        17.
        2018.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Various carbon aerogels (CAs) were prepared from polymerization of resorcinol and formaldehyde and applied as the electrode materials of an electric double layer capacitor (EDLC) with the aim of controlling the textural and electrochemical properties of CAs by the type of base catalyst and the ratio of resorcinol to catalyst (R/C). The CAs from NaHCO3 and KHCO3 with H+ ions had higher specific surface areas but exhibited lower electrochemical properties than those from K2CO3 and Na2CO3, which had more uniform pore size distributions. The electrochemical properties of Na2CO3 were superior to those of K2CO3 probably because the polarizing power of Na+ ions was higher than K+ ions. With an increasing R/C ratio, the pore sizes of CA showed a tendency to increase but the uniformity of the pore size distribution got worse. For the four base catalysts, the highest electrochemical property was obtained at the R/C ratio of 500.
        4,300원
        19.
        2017.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Carbon nanofiber (CNF) is used as an electrode material for electrical double layer capacitors (EDLCs), and is being consistently researched to improve its electrochemical performance. However, CNF still faces important challenges due to the low mesopore volume, leading to a poor high-rate performance. In the present study, we prepared the unique architecture of the activated mesoporous CNF with a high specific surface area and high mesopore volume, which were successfully synthesized using PMMA as a pore-forming agent and the KOH activation. The activated mesoporous CNF was found to exhibit the high specific surface area of 703 m2 g−1, total pore volume of 0.51 cm3 g−1, average pore diameter of 2.9 nm, and high mesopore volume of 35.2 %. The activated mesoporous CNF also indicated the high specific capacitance of 143 F g−1, high-rate performance, high energy density of 17.9-13.0Wh kg−1, and excellent cycling stability. Therefore, this unique architecture with a high specific surface area and high mesopore volume provides profitable synergistic effects in terms of the increased electrical double-layer area and favorable ion diffusion at a high current density. Consequently, the activated mesoporous CNF is a promising candidate as an electrode material for high-performance EDLCs.
        4,000원
        1 2