By developing molds and facilities to horizontally mold the functional part of the dry-cast concrete block, We intend to develop molds and a series of facilities to horizontally mold the functional part of the dry-cast concrete block to increase production per cycle while maintaining existing production methods and major facilities. In order to do so, CAE analysis is first required to develop molds and facilities for horizontally molding the functional part of the drycast concrete block in the horizontal direction. The procedure will be carried out by reviewing the validity of boundary conditions and physical properties, 3D modeling, grid generation, construction of analysis models, model validity, analysis according to frequency changes, and analysis according to physical properties. First, through the comparison of two-point support, three-point support, and two-point and three-point support in the constraint conditions, We would like to compare it with the actual molded product in the horizontal direction. But first of all, it is considered two-point support in the constraint conditions in this paper.
A laser scabbling experiment was performed using a high-power fiber laser to investigate the removal rate of the concrete block and the scabbled depth. Concrete specimens with a 28-day compressive strength of 30 MPa were used in this study. Initially, we conducted the scabbling experiment under a stationary laser beam condition to determine the optimum scan speed. The laser interaction time with the concrete surface varied between 3 s and 40 s. The degree of spalling and vitrification on the surface was primarily dependent on the laser interaction time and beam power. Furthermore, thermal images were captured to investigate the spatial and temporal distribution of temperature during the scabbling process. Based on the experimental results, the scan speed at which the optical head moved over the concrete was set to be 300 mm∙min−1 or 600 mm∙min−1 for the 4.8-kW or 6.8-kW laser beam, respectively. The spalling rates and average depth on the concrete blocks were measured to be 87 cm3∙min−1 or 227 cm3∙min−1 and 6.9 mm or 9.8 mm with the 4.8-kW or 6.8-kW laser beams, respectively.
PURPOSES : In this study, we evaluated the quality levels of abrasion resistance and freeze-thaw resistance to the surface layer (colored layer) by using an overseas abrasion resistance test method to confirm the quality suitability of the concrete block surface for a domestic production permeable block.
METHODS : In this study, a new evaluation item for increased durability apart from the quality standard of the permeable block was considered, namely, evaluation of the durability of the surface layer and the freeze-thaw resistance of the permeable block itself by EN 1338, ASTM C 779, 994, and GR 4009 (KS F 4419).
RESULTS : The abrasion resistance test for the permeable block revealed that there were relative differences according to the different test methods. However, it was observed that if the ASTM C 779 test results did not meet the wear resistance quality standards, it did not satisfy ASTM C 944 and EN 1338. The ASTM C 779 test result was analyzed to have the highest objectivity and discernment, and this test method was proposed as a permeable block wear test method. In addition, the freeze-thaw resistance test method by the GR 4007 standard can be measured by strength, so it is possible to evaluate the resistance of the permeable block through this test method.
CONCLUSIONS : The abrasion resistance test and freeze-thaw resistance test can contribute to the improvement of the permeable block when added to the current quality evaluation tests.
PURPOSES : This study was conducted to analyze the problems of the permeable block by objectively evaluating the quality of the permeable block and providing basic data to improve the quality and construction defect of the permeable block pavement in accordance with the continuously increasing demand of the permeable block.
METHODS : In this study, we evaluated the current quality standard suitability of nine products to evaluate the current quality level of domestic production permeable blocks. The evaluation items were evaluated for surface layer thickness, block dimension, strength, and permeability coefficient, and the Korea Standard suitability for these evaluation items was analyzed. In addition, a three-dimensional finite element analysis was conducted to determine the effect of vehicle load on the deformation of block pavement structure.
RESULTS : The results demonstrated that the surface layer (colored layer) thicknesses of domestically produced permeable block products were different according to the quality standards, and the dimensions were evaluated to be excellent for domestic permeable blocks currently being produced and delivered. In addition, the strength and permeability coefficient evaluation result demonstrated that all products meet the strength and permeability coefficient quality standards, but the correlation between these strengths and permeability coefficients is not high. The quality standard of strength and permeability coefficients is evaluated as being sufficiently achieved by domestic production technology.
CONCLUSIONS: The intensity and permeability coefficients measured in this study were in line with the quality standards; however, the variable coefficient was found to have a significant difference in the quality control level from a maximum of 26% to a minimum 1.7%.
최근 콘크리트 궤도 슬래브 하면과 교량 바닥판 사이에 저마찰 슬라이드층을 형성하는 궤도 시스템인 슬라이딩 궤도와 관 련된 연구가 활발히 진행되고 있다. 본 연구에서는 슬라이딩 궤도에서 열차 주행에 따른 횡방향 하중을 저항하기 위해 설치 되는 횡방향 지지 콘크리트 블록의 전단 내하력에 대한 연구를 수행하였다. 횡방향 지지 콘크리트 블록의 전단 내하력 산정 을 위해 타설경계면에서의 콘크리트 마찰 및 철근의 다월 거동을 고려한 산정 기법을 개발하다. 제안된 산정 기법은 기존의 실험에서 측정된 전단 내하력을 13∼23% 정도 보수적으로 예측하는 것으로 나타났다. 이는 균열면 골재 맞물림 효과를 무 시한 것에 따른 것으로, 현장에서의 타설경계면 상태가 불확실한 것을 고려할 때 횡방향 지지 콘크리트 블록에 대한 안전측 설계를 위해 제안된 산정 기법이 합리적인 것으로 판단된다. 제안된 전단 내하력 산정 기법을 토대로 횡방향 지지 콘크리트 블록에 대한 설계 방안을 마련하였다
해상풍력발전의 건설이 여러 가지 환경 및 가설공법 등의 설치환경 등의 원인에 의하여 건설지점이 천해에서 심해로 이동하는 경향을 나타내고 있다. 이러한 경향 속에 해상풍력발전 지지구조물의 심해화에 따른 지지구조물에 대한 연구는 중요성이 더욱 증대될 것으로 판단된다. 본 연구에서는 기존의 Jacket 구조물에 대하여 Precast Concrete Block 및 Suction pile을 적용한 Jacket 구조물을 제안하고 이에 대하여 구조해석 및 안전성 평가를 실시하였다. 또한 제안된 구조물에 동조액체감쇠기를 적용하여 구조물 진동성능 향상을 도모하고자 하였다. 연구결과, 제안된 신형식 Jacket 구조물은 충분한 안전성을 가지고 있는 것으로 평가되었으며, 동조액체감쇠기를 적용하였을 경우, 약 5%의 진동저감 효과가 있는 것으로 검토되었다.
PURPOSES: This study aims to develop a strength test method for irregularly shaped concrete block paver. METHODS : Ten (10) different types of concrete block pavers including porous and dense blocks were tested for strength capacities. Destructive and non-destructive methods were used to develop a strength test method for irregularly shaped concrete block paver. The flexural strength evaluation was conducted in accordance to KS F 4419, while compressive strength was conducted with a 45.7mm-diameter core specimen. The impact echo test method was used to evaluate the elastic modulus. Finally, regression analysis was used to investigate the relationship between flexural strength, compressive strength and elastic modulus based on their corresponding test results. RESULTS : The flexural strength of the tested block pavers ranged from 4MPa to 10MPa. At 95% confidence level, the coefficients of determination between compressive-flexural strength relationship and compressive strength-elastic modulus relationship were 0.94 and 0.84, respectively. These coefficients signified high correlation. CONCLUSIONS : Using the test method proposed in this study, it will be easier to evaluate the strength of irregularly shaped concrete block pavers through impact echo test and compressive test, instead of the flexural test. Relative to the flexural strength requirement of 5MPa, the minimum values of compressive strength and elastic modulus, as proposed, are 13.0MPa and 25.0GPa, respectively.
PURPOSES: In this study the influence factors related to abrasion resistance of interlocking concrete block have been evaluated, and comparisons between various domestic and foreign abrasion test methods was also accomplished. METHODS: The modified rotational cutting method suggested in ASTM C 944 was applied. Surface materials with different types of fine aggregate such as crushed sand, sea sand, and mixture of crushed and sea sand were tested to compare the aggregate effect for abrasion resistance. RESULTS: The different surface mixtures with various W/C ratios, mortar and fly ash ratios have been investigated for functional and economical considerations. CONCLUSIONS: This study had obtained reliable results by changing diamond blade of rotating cutter. Therefore, in order to improve the abrasion resistance of interlocking concrete block for road, a new mix design was proposed.
본 연구에서는 빛 감성친화형 콘크리트에 광촉매를 적용하여 대기질 및 실내공기질을 개선하기 위한 LEFC 블록을 개발하고자 하였다. LEFC에 광촉매를 적용하게 되면 자외선 입사면 반대편에서도 투과로 인한 자외선이 존재하여 광촉매가 반응함으로써 일반 건축 자재를 적용한 경우보다 광촉매 반응효율이 크게 상승한다. 따라서 광촉매를 LEFC에 적용하기 위해 슬럼프, J-ring, L-box 테스트를 통한 자기충전성능을 평가하여 최적 배합을 결정하였고, 압축 및 휨 강도 시험을 통해 역학성능을 평가하였다. 그리고 TiO2 분포도를 확인하기 위해 SEM과 EDS 분석을 실시하였다. ALC골재와 단열재 적용으로 광촉매 사용량을 줄이고 단위중량을 감소시키는 방안을 활용하여 광촉매 효율을 증가시키는 빛투과 콘크리트 블록을 제작하였고, 향후 건조수축 등의 문제점 개선 및 NOx 제거 실험을 통한 LEFC 블록 성능 평가를 진행하고자 한다.
파리기후협정에 따른 온실가스 자발적 감축 의무 이행을 위해 세계적으로 석탄발전과 원자력발전의 비중을 줄이고 태양광 발전을 비롯한 재생에너지의 보급에 국가적 노력을 기울이고 있다. 우리나라도 법령을 도입하여 2040년까지 재생에너지의 발전비중을 30~35%까지 늘리고자 하고 있다. 또한 국외에서는 태양광 발전을 보도 및 도로에 적용하고자 하고 노력하고 있으나 국내의 경우 관련 연구가 전무한 실정이다. 따라서 태양광발전 도로를 개발하기 위한 선행연구로서 보도 및 광장에 적용가능한 태양광 발전 콘크리트 블록을 개발하였으며 이를 현장에 시공하여 적용성을 평가하였다. 실내실험결과 압축강도는 25.5~35.7MPa이 측정되었고 휨강도는 5.1~10.5MPa이 측정되어 국내 기준은 모두 만족하는 것으로 나타났으나 단위시멘트량이 많을수록 부순잔골재의 혼입에 따라 강도가 낮게 측정되었다. 흡수율은 최대 5.7%로 나타나 국내 기준인 7%이하를 만족하였으며 동결융해시험 결과 100싸이클 후 압축강도 감소율은 최대 6.3%로 나타나 양호한 수준으로 측정되었다. 시공 후 침하량을 측정결과 최대 2.498mm가 측정되었으며 전면적에 대해 불규칙한 침하가 발생하였는데 이는 시공시 모래층의 다짐이 불량 하였거나 우수에 의한 모래 유출로 인한 것으로 판단된다. 초기발전량의 경우 일사량을 고려하면 적정량이 측정되었다. 태양광 패널과 콘크리트 블록의 유지관리 기법은 추후 연구를 통하여 보다 효율적으로 확립할 필요가 있다.
The purpose of this experimental study is to investigate performance for atmosphere purification of concrete sidewalk block using high performance Nano TiO2 Carrier. As a result, concrete sidewalk block using high performance Nano TiO2 Carrier was confirmed to be superior than commercial TiO2 concrete sidewalk block to atmosphere purification.
This paper reviews the requirements of the sound - absorbing block for the maintenance of the concrete track and suggests ways to solve it. It is applied to the design and production by preparing the shape improvement plan so that the cracks of the road can be observed. In order to secure safety by tunnel lift in the tunnel, the lift generated by computational fluid dynamics analysis is examined to confirm the safety of the sound absorption block.
This paper is concerned with the eco - friendly precast concrete parking block method which can reduce the environmental problem and maintenance cost by applying the high - strength concrete block manufactured at the factory, will be.
“일라이트와 이산화티탄을 활용한 콘크리트 블록의 수질환경개선을 위한 실험연구”를 진행하기 위해 모르타르 예비실험, 수질정 화특성, 방오실험, 어독성 실험 및 실 콘크리트 블록 제조 후 관련 KS에 준한 실험을 진행한 결과 다음과 같은 결론을 얻었다. KS에 준한 콘크리 트 블록의 성능평가 결과 전 조건에서 시험기준치의 압축강도를 상회하는 것으로 측정되었으며, 다공질구조의 일라이트 치환에 따른 흡수율 증가가 문제점으로 예상되었으나, 이산화티탄과 사전 혼합하여 치환함으로써 일라이트의 대형 공극내 이산화티탄이 정착함에 따라 흡수율 또 한 문제가 없는 것으로 관찰되었다.
In this study, it was developed geopolymer concrete of alkali-activated using the mixed fly ash and blast furnace slag. and it was developed the interlocking block using the developed geopolymer concrete. In addition, the bending strength and water absorption rate of the interlocking block was tested by KS standard. The test results were as follows. The water adsorption ratio of the BSF4 specimen was under 10%, and the flexural strength of that was over 5MPa
In this study, it was developed geopolymer concrete of alkali-activated using the mixed fly ash and blast furnace slag. and it was developed the interlocking block using the developed geopolymer concrete. In addition, the bending strength and water absorption rate of the interlocking block was tested by KS standard. The test results were as follows. The water adsorption ratio of the BSF4 specimen was under 10%, and the flexural strength of that was over 5MPa.