본 연구는 냉동전처리 기술이 분리막 기반의 슬러지 탈수공정에 미치는 영향에 대해 연구하였다. 냉동법은 응집법이나 원심분리법과는 달리, 슬러지 Cell lysis를 통해 Cell의 체액을 유출시킬 수 있음을 확인하였다. Cell lysis 이후 슬러지를 정밀여과법으로 분리하여 슬러지 탈수효율을 증가시키고자 하였으나, 냉동전처리로 인해 슬러지의 모세관 흡입시간과 여과소요시간이 약 13배 증가함으로써 슬러지 탈수효율이 감소하였다. 이는 슬러지로부터 방출된 유기물에 의한 슬러지 케이크 형성과 작은 슬러지 입자에 의한 세공차단현상에 의한 것이다. 적절한 공극 크기 및 슬러지 흡착에 내성을 갖는 분리막의 개발이 이루어 진다면, 냉동전처리와 분리막 공정의 혼성화기술은 슬러지 탈수에 적용 가능할 수 있을 것으로 보인다.
알로에의 최소공정개발 연구의 일환으로 DIS(dewatering & impregnation soaking) 공정에 미치는 온도의 효과를 조사하였다. 삼투탈수는 분자량 4000의 PEG을 삼투제로 하여 이의 40%(w/v) 용액에 두께 0.5 cm의 알로에 잎 슬라이스를 넣고 간헐적으로 교반하면서 2시간 동안 수행하였다. 서로 다른 침지온도(25-55oC)가 DIS의 성능(수분소실 및 고형분 획득)에 미치는 영향을 현미경관찰에 의한 세포조직 구조의 경시변화를 모니터링하면서 조사, 비교되었고, 동역학적으로 분석하였다. 고온(55oC) 처리에서는 저온(25 and 35oC)에서보다 더 높은 수분소실을 보였으나 세포조직의 파괴를 동반하였다. 또, 품질지표값으로서의 glucomannan 함량은 세포조직구조를 잘 유지하였던 침지온도 35oC에서 얻어졌다. 얻어진 시료의 실온건조제품을 재수화시켜 조사하고 동역학적으로 해석한 결과, 재수화 동역학은 Peleg 및 Weibull 모델로 잘 설명할 수 있었다. DIS 제품은 DIS 처리하지 않은 제품에 비해 세포구조 및 재수화성질의 향상을 주어 적정온도하에서 DIS 처리함으로써 최소공정의 알로에 제품을 얻을 수 있음을 확인하였다.
The optimization of dewatering and impregnation soaking (DIS) process for a concentrated Aloe vera product was investigated using Taguchi method in combination with desirability function analysis. Polyethylene glycol (PEG) as osmotic agent was adopted, and soaking temperature (T), immersion time (t), PEG concentration (C), PEG molecular weight (MW), and thickness of Aloe vera leaf slice (x) were selected as affecting variables. L16 (45) orthogonal array was designed by Taguchi method with four parameters such as water loss, solid gain, glucomannan, and anthraquinone contents as objective functions. An overall quality index was transformed from individual objective functions, and was optimized finally. The optimal setting for maximum overall desirability was obtained at 55oC (T), 2 hr (t), 40% w/v (C), 0.5 cm (x), and 4,000 Da. (MW). The obtained overall desirability was 0.7842. The order of affecting factors was T>C>x>MW≈x>t and the experimental results under optimum condition were similar to the prediction of an overall desirability of 0.8384. Also, it was found that the optimized DIS condition could be reproduced for a minimally processed Aloe vera product with high quality.
The structural and physicochemical properties of dried aloe vera gel by DIS (dewatering impregnation soaking) process under optimum conditions were investigated. FT-IR spectra for dried samples of DIS aloes showed the typical patterns of standard aloe polysaccharide, and surface structures by SEM (scanning electron microscopy) were similar to a gel-like structure. In case of physicochemical properties of dried aloe samples by DIS process, solubilities and swelling powers of control (not osmotic treated aloe), DIS (S) and DIS (G), samples treated by osmotic solution of 60% sucrose/0.25% NaCl and 50% glucose/0.5% NaCl, were 48.3-57.3% and 8.3-11.7%, respectively, showing no significant differences among samples, but swelling power of DIS (PEG), sample treated by using 50% polyethylene glycol as an osmotic agent was about 5 times higher that of control. Also, water holding capacities of control, DIS (S) and DIS (G) were similar to each other, but that of DIS (PEG) was about 5 times higher that of control. Oil holding capacities of control and DIS aloes maintained the 50.9-86.4% levels of water holding capacities showing no significant differences among samples. Rehydration ratio of DIS (PEG) aloes were significantly dependent on the temperature of rehydrated solvent (water), and rehydration ratio of not-fileted aloe was about two folds higher than that of fileted aloe.
The dewatering characteristics of the sewage sludge was investigated through the experimental observations and model simulations. The activated sludge and the anaerobically digested sludge were examined for the dewaterability evaluation within the pressure range of $0{\sim}10^6N/m^2$. Modified Buchner funnel test and compression test by the consolidometer were conducted to evaluate average specific resistance, porosity, and moisture percentage of filter cake. Shirato's technique of compression-permeability test was followed for the pressure range lower than about $10^2N/m^2$. The flocculation effects on sludge dewatering was also examined for ferric chloride and polymeric flocculant. The application of hydrated lime which can be used for flue-gas desulfurization showed improved moisture percentage, and was thought to have positive feasibility in combined system of sludge dewatering and incineration. Determined characteristic constants were applied to Tiller's cake filtration model to simulate liquid pressure distribution and porosity distribution in cake. Model simulations showed a sharp drop of the porosity close to the cake-medium interface for the highly compressible material such as the activated sludge and the anaerobically digested sludge.
This study was carried out to investigate the economic and environmentally friendly process of drying sludge by combining a mechanical dewatering filter press and thermal dryer. The dryer for 40 kg/hr of dewatered sludge consisted of a main dryer, a heat exchanger, a pre-dryer, and supplementary equipment. During the dewatering process, 100 kg of sludge with 80.11% water content was diluted and mixed with 400 kg of water and ferric chloride solution was added as a sludge conditioner. The average water content of dewatered sludge cake was 60.9% and the energy consumption rate (ECR) for removing water was 226.9 kcal/kg-H2O. Hot flue gas generated from the main dryer was utilized as heating air for the pre-dryer in the heat exchanger. When 36 kg/hr of dewatered sludge cake was dried, the ECR was 1,009 kcal/kg-H2O with 3.96% water content. The combined operation of the dewatering and the thermal drying processes showed that the ECR was reduced sharply to 521 kcal/kg-H2O. The high humidity gas generated from each drying unit in the main dryer was recirculated to the odor decomposition chamber in the main dryer to destroy odor components at a high temperature. The odor concentration of humid gas generated by the pre-dryer was very low due to the relatively low operating temperature.
인과 질소는 하천, 호소 등의 부영양화의 주요 인자로 작용하고 있고 특히 하수 중의 인 농도가 1 mg/L 이상일 경우 조류의 급증식이 일어날 수 있다. 현재 우리나라 하수처리 공정은 인을 기준치 이하로 제거하기 위해 총인 처리 공정을 운영하고 있으나, 이 과정에서 제거된 인은 슬러지와 혼합되어 폐기처분되고 있다. 인은 무한자원이 아닌 유한자원으로 비료, 금속표면처리 세정제를 비롯하여 다양한 용도로 사용될 수 있으며, 우리나라의 경우 전량 수입에 의존하고 있다. 최근 인광석 매장량의 한계로 인하여 인을 회수하여 재이용하는 기술이 반드시 필요한 실정이고, 그 대안으로 축산폐수, 혐기성발효액, 하수처리 시 발생되는 인을 유용한 자원으로 회수하는 방법에 관한 연구가 활발히 이루어지고 있다. 그러나 기존의 연구된 인결정은 100㎛ 이하의 미세 결정으로 고액분리 및 탈수에 어려움이 있다. 본 연구에서는 인제거 기술 중 화학적 침전법 중 하나인 MAP(Magnesium Ammonium Phosphate) 법을 적용하여 부천시와 공동으로 부천시 소재 공공하수처리장에서 발생되는 탈수여액내의 인을 회수하고자 하였으며 다양한 실험조건(pH, 약품, 주입량, Seed적용)에 따라 인회수 및 입상화의 최적 조건을 도출하고 연속반응조를 통하여 2mm 이상의 크기로 입상화가 가능함을 확인하였다. Jar-test 실험결과 pH 9, 몰비 1~9(Mg2+/PO4-P) 범위에서 PO4-P가 55%~90% 제거되었으며, 생성된 결정화물을 seed로 사용하여 최적 약품투입량 도출결과 pH9, 몰비1 조건에서 6회 재사용시 seed 미적용 대비 PO4-P 제거율이 36% 상승하였다. 도출된 조건을 이용하여 2단 상향류(내경이 1.1cm, 1.8cm) 반응조와 침전조로 구성된 Lab Scale 반응조에서 선속도를 변화시켜 입상화를 유도하였다. 입상화시 PO4-P 제거율은 70%~84%, NH3-N 제거율은 20%~28%로 나타났으며, 내경 1.1cm의 반응조 하부에는 2mm~1.5mm, 내경 1.8cm의 반응조 상부에서는 0.6mm~1.2mm로 입상화되었다. 본 연구에서 미립 결정화물을 연속 순환을 통하여 선속도에 따른 입상화를 확인한 결과, 2mm 이상의 인 결정화물의 생성이 가능함을 입증하였다. 이를 통해 탈수 및 건조에 소요되는 에너지를 최소화하고 고순도 입상화로 비료 가치를 향상시켜 경제성 확보가 가능할 것으로 사료된다.
The dewaterability of pig manure by heat pre-treatment was evaluated in this study. The specific resistance coefficient, a dewatering characteristic, was measured by time to filtration (TTF) test. The experimental conditions were set for heat treatment: 15, 30, 60, and 120 min at 120 ± 1oC and 16, 30, and 60 min at 135 ± 1oC, respectively. The specific resistance coefficient of pig manure was found to be 9.204 × 1011m/kg before treatment, and it gradually decreased with high temperature and long treatment time. Moisture content was decreased from 88% to 77% by heat pre-treatment, and its efficiency was better than mechanical solid-liquid separation with chemical addition. In addition to increased dewaterability, TOC (Total Organic Carbon) concentration was decreased for about 15-42%. Nitrogen concentration was also decreased due to conversion of NH4 +-N to NH3 gas by increased treatment temperature. Consequently, heat pre-treatment was effective for decreasing moisture content and organic matters, and it could have potential for nitrogen recovery.
A rapid chemical dewatering of the in-situ hydraulically dredged coastal sediment suspensions treated with cationic cetyl-trimethyl-ammonium-bromide (CTAB) was investigated. The dewatering process consisted of coating or adsorption of the surfactant on the surface of sediment to change its hydrophobicity and hexane spraying to enhance moisture removal from the sediment surface. The dredged wet sediment sample was wet-sieved with the #450 sieve (32 μm) and synthetic sea-water made of bay salt (3.5%). The sieved sediment was settled and then freeze-dried. Considering the field process, the freeze-dried sediment was pre-treated by adding 5 M H2O2 and 0.5% Tween 80 to remove organics in the sediment and then adding 0.5% alum and 0.001% PAC for flocculation. The mean water content of the pre-treated sediment was 55.8~59.1%. The CTAB dosage was in the range of 0.001 to 1.0 g per 10 g of the pre-treated sediment (0.01 to 0.10 (wt/wt) of CTAB/sediment ratio). After addition, the sediment and CTAB mixture was mixed thoroughly by using a vortex followed by freeze-dried. For hydrophobicity test, 0.5 g of the freeze-dried samples were taken into the two-layer solutions mixed with hexane (20 mL) and deionized water (20 mL). The higher amount of the samples were migrated into the hexane layer as the CTAB dosage increased to 0.1 g (Fig. 1), indicating that the surface charge of the sediment was neutralized by electrostatic attraction of negative charged sediment particles with cationic CTAB. The additional dosage of CTAB to 1.0 g per 10 g sediment led to transfer some of the sediment back into the water layer (Fig. 1). The optimum dosage of CTAB was 0.1 to 0.2 g per 10 g sediment. The sediments with the optimum dosage were transferred onto the filter paper and treated with spraying 0.25 to 1.0 mL of hexane per 1 g sediment, resulting in the significant decrease in the water content to 21% at 1.0 mL hexane/g sediment.
The effect of sewage sludge irradiation and addition of starfish as a dewatering agent on the efficiency of composting was investigated using saw dust as a bulking agent. Results indicates that the temperature of EB sludge cake (electron beam irradiated sludge cake) and EB-SF sludge cake (electron beam irradiated sludge cake mixed with star fish powder) composting piles rose up to 62 ~ 66oC within 1 day and maintained high temperature of 52 ~ 55oC for more than 3 days, which was much higher than that of the control. The electron beam irradiation and addition of star fish accelerate the composting. The control sludge cake composting pile needed 35 days to reach the criteria of mature rate for composting, (Final C/N ratio)/(Initial C/N ratio) of 0.75, while EB-SF sludge cake composting plie required 11 days. This means that maturing compost could be highly improved by irradiating sludge cake or by adding star fish powder. The pH of the composting pile of sludge cake with addition of waste star fish powder rose 1 pH unit higher than that of the control during the entire operation, showing that the star fish has a good buffering capacity. The pH of the final matured compost was above pH 7, satisfying the standard of soil conditioner. The G.I. values of Chinese cabbage and lettuce with composts from EB sludge cake and EB-SF sludge cake composting pile ranged 88 ~ 99, satisfying a safety level (G.I. 80) in plant growth. After 60 days operation for composting 4 different types of sludge cakes, each compost was able to meet the Ministry of Agriculture's Standards of Compost.
This study aimed to investigate the influence of the conditioning properties such as pH, mixing speed and reaction time on the dewaterability of sewage sludge and compare the performance with the derived conditions at the different solid concentrations. Performance parameters including time to filter test (TTF), specific resistance to filtration (SRF) and water content showed the optimum result at the pH value of 3, the rapid mixing speed of 200 rpm, and the slow reaction time of 20 min. In case of 20,000 mg/L of TS, a dosage of 1.0 g inorganic conditioner/L-sludge decreased TTF, SRF, water content of dewatered sludge cake, turbidity of the supernatant from 146 to 22 sec, 2.0 × 1014 to 0.4 × 1014 m/kg, 81.6 to 74.8% and 112 to 51 NTU, respectively.
The amount of contaminated dredged materials are increasing every year in Korea. Secondary contamination would be expected, if contaminated marine clayey slurry remains without treatment. Therefore, the appropriate remedial treatments are required in order to prevent secondary contamination. Electrokinetic method is especially suitable for low permeability dredged clayey soils because pore fluid can be easily transported by electric field. Hydrogen ions created by electrolysis enhance the remedial processes by desorbing heavy metal contaminants from slurry soil surfaces. This study investigated variation of electrical current and voltage gradient during the treatment, and ICP analysis as well as pH measurements were carried out to measure zinc concentration during and after the treatment.