검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 567

        101.
        2019.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To improve the performance of carbon nanofibers as electrode material in electrical double-layer capacitors (EDLCs), we prepare three types of samples with different pore control by electrospinning. The speciments display different surface structures, melting behavior, and electrochemical performance according to the process. Carbon nanofibers with two complex treatment processes show improved performance over the other samples. The mesoporous carbon nanofibers (sample C), which have the optimal conditions, have a high sepecific surface area of 696 m2 g−1, a high average pore diameter of 6.28 nm, and a high mesopore volume ratio of 87.1%. In addition, the electrochemical properties have a high specific capacitance of 110.1 F g−1 at a current density of 0.1 A g−1 and an excellent cycling stability of 84.8% after 3,000 cycles at a current density of 0.1 A g−1. Thus, we explain the improved electrochemical performance by the higher reaction area due to an increased surface area and a faster diffusion path due to the increased volume fraction of the mesopores. Consequently, the mesoporous carbon nanofibers are demonstrated to be a very promising material for use as electrode materials of high-performance EDLCs.
        4,000원
        102.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Effects of multi-walled carbon nanotube (MWCNT) type and flow type (shear and elongational flow) on the electrical conductivity of polycarbonate (PC)/MWCNT nanocomposites were investigated. Two different MWCNTs produced a huge difference in electrical conductivity in an injection molded PC/MWCNT nanocomposite. It was observed that MWCNTs having a higher aspect ratio provide much lower electrical conductivity in injection molded PC/MWCNT nanocomposites while the conductivities of compression molded samples from two different MWCNTs were the same. We found that this is due to a difference in the deformability of the two MWCNTs. Nanocomposite samples prepared at a higher extensional rate and shear rate showed lower electrical conductivity. This is attributed to flow induced orientation of the MWCNTs. The experimental results were discussed in relation to variation in the tube–tube contact due to the change of the MWCNT orientation.
        4,000원
        103.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For the automotive application, graphene-glass composites were fabricated using E-glass fiber(GF) coated with various types of graphene nanosheets deposited by electrophoretic deposition. Graphene oxide(GO) was first synthesized using a modified Hummer’s method and its subsequent ultrasonic treatment in deionized water produced a stable stop of the GO. Glass fiber was immersed in water and GO suspension near the copper anode. The potential applied between the electrodes caused the GO to move toward the anode. In addition, the GO coated yarn was exposed to hydrazine hydrate at 100℃ to obtain a reduced graphene oxide(rGO) coating yarn. Both GO and rGO coated glass fiber yarns were used to fabricate unidirectional epoxy-based multi-scale composites by passive lay-up. The presence of a conductive rGO coating on glass fiber improves both the electrical conductivity and thermal conductivity of the composite. In addition, rGO-based epoxy-glass composites have been used to improve the dielectric constant, providing the option of using this structure for electromagnetic interference shielding.
        4,000원
        104.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        오래된 구조물의 내부 결함은 그 구조물의 안전에 큰 영향을 미친다. 따라서 안전에 문제가 생기기 전에 미리 검사를 진행하고 발견하는 것이 중요하다. 가장 쉽고 효율적인 방법은 육안으로 구조물을 진단하는 것이나, 프리스트레스트 콘크리트(PSC) 교량과 같은 구조물에서 부식이나 공극 같은 결함들은 피복으로 감싸져 있어 육안으로는 확인이 불가하다. 따라서 내부 결함도 진단할 수 있는 비파괴검사방법을 이용하여 진단해야 한다. 본 연구에서 사용되는 기술은 전력용 케이블을 진단할 때 주로 사용되는 시간 영역의 반사파 계측법과 시간-주파수 영역의 반사파를 적용하여 종단지점에 부착된 측정기계에서 인가한 신호가 이동하는 중 전기적 임피던스 변화에 의해 발생하는 반사파를 분석하는 기술로 측정시간 단축, 검사의 간편성과 같은 측면에서 훨씬 큰 효율성을 가진다. 하지만 토목 구조물은 전력용 케이블과 달리 내부 구조가 복잡하여, 실제 진단을 진행하는데 어려움이 있기에 본 연구에서는 실제 실험과 COMSOL을 이용한 시뮬레이션의 결과를 확인 및 비교하여 시뮬레이션의 정확도와 적용가능성을 확인하였고, 반사파 계측법이 복잡한 구조물을 대상으로도 사용 가능한지 그 가능성 또한 보았다. 또한 더 나아가, 시뮬레이션을 통해 프리스트레스트 콘크리트(PSC) 교량의 덕트 내부에 공극 및 부식과 같은 결함이 생겼을 때, 그 결함들이 반사파에 미치는 영향을 보았다.
        4,000원
        108.
        2018.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Cu2ZnSn(S,Se)4 (CZTSSe) films were prepared on Mo coated soda lime glass substrates by sulfo-selenization of sputtered stacked Zn-Sn-Cu(CZT) precursor films. The precursor was dried in a capped state with aqueous NaOH solution. The CZT precursor films were sulfo-selenized in the S + Se vapor atmosphere. Sodium was doped during the sulfo-selenization treatment. The effect of sodium doping on the structural and electrical properties of the CZTSSe thin films were studied using FE-SEM(field-emission scanning electron microscopy), XRD(X-ray diffraction), XRF(X-ray fluorescence spectroscopy), dark current, SIMS(secondary ion mass spectrometry), conversion efficiency. The XRD, XRF, FE-SEM, Dark current, SIMS and cell efficiency results indicated that the properties of sulfo-selenized CZTSSe thin films were strongly related to the sodium doping. Further detailed analysis and discussion for effect of sodium doping on the properties CZTSSe thin films will be discussed.
        4,000원
        109.
        2018.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In recent years, solar cells based on crystalline silicon(c-Si) have accounted for much of the photovoltaic industry. The recent studies have focused on fabricating c-Si solar modules with low cost and improved efficiency. Among many suggested methods, a photovoltaic module with a shingled structure that is connected to a small cut cell in series is a recent strong candidate for low-cost, high efficiency energy harvesting systems. The shingled structure increases the efficiency compared to the module with 6 inch full cells by minimizing optical and electrical losses. In this study, we propoese a new Conductive Paste (CP) to interconnect cells in a shingled module and compare it with the Electrical Conductive Adhesives (ECA) in the conventional module. Since the CP consists of a compound of tin and bismuth, the module is more economical than the module with ECA, which contains silver. Moreover, the melting point of CP is below 150 ℃, so the cells can be integrated with decreased thermal-mechanical stress. The output of the shingled PV module connected by CP is the same as that of the module with ECA. In addition, electroluminescence (EL) analysis indicates that the introduction of CP does not provoke additional cracks. Furthermore, the CP soldering connects cells without increasing ohmic losses. Thus, this study confirms that interconnection with CP can integrate cells with reduced cost in shingled c-Si PV modules.
        4,000원
        110.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Underground cavities are frequently taking place in urban areas due to soil loss caused by structural defects of underground buried pipes. In this study, a field experimental program was conducted to detect ground condition using the electrical resistivity survey and the pneumatic cone penetration test. In addition, we proposed a method to estimate the weighted mean resistivity value by quantifying the electrical resistivity measurements through image analysis in order to compare the results of pneumatic cone penetration test. Consequently, it was found that as the weighted average resistivity value decreased, the smaller the N-value (penetration depth per blow number) from the pneumatic cone penetration test results. Based on the limited number of field experimental measurements, the correlation between weighted average resistivity value and the N-value of pneumatic cone penetration test is deemed promising in assessment of ground conditions associated with developing underground cavitation.
        4,000원
        112.
        2018.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        TaNx film is grown by plasma enhanced atomic layer deposition (PEALD) using t-butylimido tris(dimethylamido) tantalum as a metalorganic source with various reactive gas species, such as N2+H2 mixed gas, NH3, and H2. Although the pulse sequence and duration are the same, aspects of the film growth rate, microstructure, crystallinity, and electrical resistivity are quite different according to the reactive gas. Crystallized and relatively conductive film with a higher growth rate is acquired using NH3 as a reactive gas while amorphous and resistive film with a lower growth rate is achieved using N2+H2 mixed gas. To examine the relationship between the chemical properties and resistivity of the film, X-ray photoelectron spectroscopy (XPS) is conducted on the ALD-grown TaNx film with N2+H2 mixed gas, NH3, and H2. For a comparison, reactive sputter-grown TaNx film with N2 is also studied. The results reveal that ALD-grown TaNx films with NH3 and H2 include a metallic Ta-N bond, which results in the film’s higher conductivity. Meanwhile, ALD-grown TaNx film with a N2+H2 mixed gas or sputtergrown TaNx film with N2 gas mainly contains a semiconducting Ta3N5 bond. Such a different portion of Ta-N and Ta3N5 bond determins the resistivity of the film. Reaction mechanisms are considered by means of the chemistry of the Ta precursor and reactive gas species.
        4,000원
        113.
        2018.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study investigated the effects of the post annealing temperatures on the electrical and interfacial properties of a metal-semiconductor-metal photodetector(MSM-PD) device. The interdigitate type MSM-PD devices had the structure Al(500 nm) / Ti(200 nm) / poly-Si(500 nm). Structural analyses of the MSM-PD devices were performed by employing X-ray diffraction(XRD), scanning electron microscopy(SEM) and transmission electron microscope(TEM). Electrical characteristics of the MSM-PD were also examined using current-voltage(I-V) measurements. The optimal post annealing condition for the Schottky contact of MSM-PD devices are 350℃-30minutes. However, as the annealing temperature and time are increased, electrical characteristics of MSM-PD device are degraded. Especially, for the annealing conditions of 400℃-180minutes and 500℃-30minutes, the I-V measurement itself was impossible. These results are closely related to the solid phase reactions at the interface of MSM-PD device, which result in the formation of intermetallic compounds such as Al3Ti and Ti7Al5Si12.
        4,000원
        114.
        2018.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon chain inserted carbon nanotubes (CNTs) have been experimentally proven having undergone pronounced property change in terms of electrical conductivity compared with pure CNTs. This paper simulates the geometry of carbon chain inserted CNTs and analyzes the mechanism for conductivity change after insertion of carbon chain. The geometric simulation of Pt doped CNT was also implemented for comparison with the inserted one. The results indicate that both modification by Pt atom on the surface of CNT and addition of carbon chain in the channel of the tube are effective methods for transforming the electrical properties of the CNT, leading to the redistribution of electron and thereby causing the conductivity change in obtained configurations. All the calculations were obtained based on density functional theory method.
        4,000원
        115.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        절화용 수국 4품종(‘Magical Amethyst’, ‘Magical Emerald’, ‘Magical Pearl’, ‘Magical Sneeuwbal’)의 상자재배시 배지의 종 류 및 배양액의 EC 농도가 개화에 미치는 영향을 구명하기 위하여 본 실험을 수행하였다. 분홍색 계열인 수국 ‘Magical Amethyst’의 경우, 개화는 7월 4일에서 7월 17일 사이에 이루어 졌다. 식물체당 개화율은 코코피트:원예용상토(1:1, v/v), 원예 용상토 그리고 펄라이트에서 75% 이상으로 나타났으며 분지수 당 개화율은 펄라이트의 EC 0.8dS·m-1에서 85%로 가장 높게 나타났다. 절화장은 코코피트의 EC 0.8dS·m-1에서 77.3cm로 가장 길게 나타났으며 화폭은 펄라이트의 EC 0.8dS·m-1에서 19.4cm로 가장 컸다. 또 다른 분홍색 계열인 수국 ‘Magical Emerald’에 있어서 개화는 5월 18일에서 6월 12일 사이에 이루 어졌다. 식물체당 개화율은 모든 처리에서 거의 100%로 높게 나타났으며 분지수당 개화율은 코코피트:원예용상토(1:1, v/v) 와 암면의 EC 0.8dS·m-1에서 100%를 보였다. 절화장과 화폭은 각각 원예용상토의 EC 1.4dS·m-1에서 62.1cm 그리고 25.8cm 로 가장 크게 나타났다. 흰색 계열인 수국 ‘Magical Pearl’의 경 우, 개화시기는 5월 30일에서 6월 8일이었으며 식물체당 개화율 은 대부분의 처리에서 75%를 보였으며 암면과 펄라이트의 EC 0.8dS·m-1에서 분지수당 개화율이 95.8%로 가장 높게 나타났 다. 절화장은 원예용상토의 EC 1.6dS·m-1에서 53.7cm로 가장 길었으며 화폭은 암면의 EC 0.8dS·m-1에서 24.7cm로 가장 컸 다. 흰색 계열인 수국 ‘Magical Sneeuwbal’에 있어서 개화는 5월 20일에서 6월 25일 사이에 이루어졌다. 식물체당 개화율은 일반 적으로 코코피트와 원예용상토에서 양호하게 나타났다. 절화장 과 화폭은 원예용상토의 EC 1.6dS·m-1과 EC 1.4dS·m-1에서 각각 71.7cm 그리고 24cm로 가장 높았다.
        4,000원
        116.
        2017.12 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 용액 공정으로 제작된 단분자 기반의 유기 반도체 전계효과 트랜지스터에 적용된 보호막이 유기 트랜지스터의 전기적 안정성에 미치는 영향에 대해여 살펴보았다. Solvay社에서 제공한 용액 공정형 유기 단분자 반도 체를 채널로 사용하여 제작한 유기 트랜지스터는 약 1 cm2/Vs의 상대적으로 높은 이동도를 보였으며, 대략 2.5 ~ 20 k Ωcm 범위의 낮은 접촉저항을 가진 것으로 측정되었다. 무엇보다 중요한 것은, 제작한 유기 트랜지스터에 불소원자가 함유된 Hyflon AD를 보호막으로 적용하였을 때, 보호막을 적용하기 전에 비해 훨씬 더 향상된 전기적 안정성을 보였 다. 이는 불소원자가 함유된 Hyflon AD 고분자막이 대기 중의 수분을 효과적으로 차단하기 때문으로 추측된다.
        4,000원
        117.
        2017.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A composite material was prepared for the bipolar plates of phosphoric acid fuel cells(PAFC) by hot pressing a flake type natural graphite powder as a filler material and a fluorine resin as a binder. Average particle sizes of the powders were 610.3, 401.6, 99.5, and 37.7 μm. The density of the composite increased from 2.25 to 2.72 g/cm3 as the graphite size increased from 37.7 to 610.3 μm. The anisotropy ratio of the composite increased from 1.8 to 490.9 as the graphite size increased. The flexural strength of the composite decreased from 15.60 to 8.94MPa as the graphite size increased. The porosity and the resistivity of the composite showed the same tendencies, and decreased as the graphite size increased. The lowest resistivity and porosity of the composite were 1.99 × 10−3 Ωcm and 2.02 %, respectively, when the graphite size was 401.6 μm. The flexural strength of the composite was 10.3MPa when the graphite size was 401.6 μm. The lowest resistance to electron mobility was well correlated with the composite with lowest porosity. It was possible the flaky large graphite particles survive after the hot pressing process.
        4,000원
        118.
        2017.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Mesoporous carbon nanofibers as electrode material for electrical double-layer capacitors(EDLCs) are fabricated using the electrospinning method and carbonization. Their morphologies, structures, chemical bonding states, porous structure, and electrochemical performance are investigated. The optimized mesoporous carbon nanofiber has a high sepecific surface area of 667 m2 g−1, high average pore size of 6.3 nm, and high mesopore volume fraction of 80 %, as well as a unifom network structure consiting of a 1-D nanofiber stucture. The optimized mesoporous carbon nanofiber shows outstanding electrochemical performance with high specific capacitance of 87 F g−1 at a current density of 0.1 A g−1, high-rate performance (72 F g−1 at a current density of 20.0 A g−1), and good cycling stability (92 F g−1 after 100 cycles). The improvement of the electrochemical performance via the combined effects of high specific surface area are due to the high mesopore volume fraction of the carbon nanofibers.
        4,000원
        119.
        2017.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, an Al-0.7wt%Fe-0.2wt%Mg-0.2wt%Cu-0.02wt%B alloy was designed to fabricate an aluminum alloy for electrical wire having both high strength and high conductivity. The designed Al alloy was processed by casting, extrusion and drawing processes. Especially, the drawing process was done by severe deformation of a rod with an initial diameter of 12 mm into a wire of 2 mm diameter; process was equivalent to an effective strain of 3.58, and the total reduction in area was 97 %. The drawn Al alloy wire was then annealed at various temperatures of 200 to 400 °C for 30 minutes. The mechanical properties, microstructural changes and electrical properties of the annealed specimens were investigated. As the annealing temperature increased, the tensile strength decreased and the elongation increased. Recovery or/and recrystallization occurred as annealing temperature increased, and complete recrystallization occurred at annealing temperatures over 300 °C. Electric conductivity increased with increasing temperature up to 250 °C, but no significant change was observed above 300 °C. It is concluded that, from the viewpoint of the mechanical and electrical properties, the specimen annealed at 350 oC is the most suitable for the wire drawn Al alloy electrical wire.
        4,000원