강진은 적절한 내진 설계 기술이 적용되지 않으면 건물 붕괴로 인하여 극심한 피해가 발생할 수 있다. 이를 해결할 수 있는 면진 기술은 구조물과 지반 사이에 베어링 장치를 적용하여 지진 에너지를 흡수하고 건물에 전달되는 진동을 감쇠한 다. 본 연구는 고무 마찰 베어링 장치의 구조물 적용성을 검증하고 지진으로부터 안전성을 확보하기 위하여 고무 마찰 베어링 프레임 구조물에 대한 수치해석을 수행하였다. 수치해석 결과로써 최대 지붕 가속도와 총 밑면 전단력이 감소되어 내진 성능을 확인하였다. 또한, 최대 층간 변위 및 최대 잔류 층간 변위에 대한 분석 결과로 프레임 구조물을 경제적 복구 수준의 결과를 도 출하여 고무 마찰 베어링 장치의 우수한 내진 성능을 확인하였다.
From measured thermal conductivity and modeling by simulation, this study suggests that U-factors are highly related to materials used between steel and polymer. The objective and prospective point of this study are to relate the relationship between the U-factor and the thermal conductivity of the materials used. For the characterization, EDX, SEM, a thermal conductive meter, and computer simulation utility are used to analyze the elemental, surface structural properties, and U-factor with a simulation of the used material between steel and polymer. This study set out to divide the curtain wall system that makes up the envelope into an aluminum frame section and entrance frame section and interpret their thermal performance with U-factors. Based on the U-factor thermal analysis results, the target curtain wall system is divided into fix and vent types. The glass is 24 mm double glazing (6 mm common glass +12 mm Argon +6 mm Low E). The same U-factor of 1.45 W/m2·K is applied. The interpretation results show that the U-factor and total U-value of the aluminum frame section are 1.449 and 2.343 W/m2·K, respectively. Meanwhile, those of the entrance frame section are 1.449 and 2.
최근 국내의 지진발생 빈도가 증가함에 따라, 지진피해 저감 시스템 중 가장 효율이 높은 제진방식의 문제점을 해결하며 댐퍼의 복원성과 에너지 소산 능력을 증가시켜 잔류변형 감소와 사용성 증대 효과를 발생시키는 새로운 제진설계 방식이 필요하다. 본 연구에서는 학교 등 기존에 시공된 비내진상세 철근콘크리트 구조물의 지진에 의한 뒤틀림 방지, 횡방향 변위제어 및 진동저감을 위하여 구조물의 양 옆에 원형강봉댐퍼를 설치하는 시스템을 제안하고, 2층 철근콘크리트골조 실험체를 반복횡 하중 가력 하여 내진성능을 평가하였다. 무보강 및 보강 실험체들의 실험결과를 비교한 결과 외부보강용 원형강봉댐퍼 시스템이 2층 철근콘크리트 골조의 강성과 에너지소산면적을 증가시켜 내진성능을 증가시킴을 확인하였다. 또한 원형강봉댐퍼가 지진 에너지를 소산하여 지진력을 흡수함을 확인하였다.
Existing reinforced concrete frame buildings designed for only gravity loads have been seismically vulnerable due to their inadequate column detailing. The seismic vulnerabilities can be mitigated by the application of a column retrofit technique, which combines high-strength near surface mounted bars with a fiber reinforced polymer wrapping system. This study presents the full-scale shaker testing of a non-ductile frame structure retrofitted using the combined retrofit system. The full-scale dynamic testing was performed to measure realistic dynamic responses and to investigate the effectiveness of the retrofit system through the comparison of the measured responses between as-built and retrofitted test frames. Experimental results demonstrated that the retrofit system reduced the dynamic responses without any significant damage on the columns because it improved flexural, shear and lap-splice resisting capacities. In addition, the retrofit system contributed to changing a damage mechanism from a soft-story mechanism (column-sidesway mechanism) to a mixed-damage mechanism, which was commonly found in reinforced concrete buildings with strong-column weak-beam system.
Existing reinforced concrete building structures have seismic vulnerabilities due to their seismically-deficient details resulting in non-ductile behavior. The seismic vulnerabilities can be mitigated by retrofitting the buildings using a fiber-reinforced polymer column jacketing system, which can provide additional confining pressures to existing columns to improve their lateral resisting capacities. This study presents dynamic responses of a full-scale non-ductile reinforced concrete frame retrofitted using a fiber-reinforced polymer column jacketing system. A series of forced-vibration testing was performed to measure the dynamic responses (e.g. natural frequencies, story drifts and column/beam rotations). Additionally, the dynamic responses of the retrofitted frame were compared to those of the non-retrofitted frame to investigate effectiveness of the retrofit system. The experimental results demonstrate that the retrofit system installed on the first story columns contributed to reducing story drifts and column rotations. Additionally, the retrofit scheme helped mitigate damage concentration on the first story columns as compared to the non-retrofitted frame.
The improvement in computing systems and sensor technologies devotes to conduct data-driven structural health monitoring algorithms for existing civil infrastructures. Despite of the development of techniques, the uncertainty oriented from the measurement results in the discrepancy to the actual structural parameters and let engineers or decision makers hesitate to adopt such techniques. Many studies have shown that the modal identification results can be affected by the uncertainties due to the applied methods and the types of loading. This paper aims to compare the performance of modal identification methods using Structural Modal Identification Toolsuite (SMIT) which has been developed to facilitate multiple identification methods with a user-friendly designed platform. The data fed into SMIT processes three stages for the comprehensive identification including preprocessing, eigenvalue estimation, and post-processing. The seismic and white noise response for shear frame model was obtained from numerical simulation. The identified modal parameters is compared to the actual modal parameters. In order to improve the quality of coherence in identified modal parameters, several hurdles including modal phase collinearity and extended modal amplitude coherence were introduced. Numerical simulation conducted on the 5 dof shear frame model were used to validate the effectiveness of using these parameters.
Numerical behavior of FRP(Fiber Reinforced Polymer) panel in steel frame structure was evaluated through the finite element analysis in this study. In order to numerical analysis, a experimental test results was used to develop a three dimensional finite element model of steel frame specimen. Numerical results of the steel frame specimen was well predicted the experimental behavior of steel frame specimen. Based on the developed three dimensional finite element model of steel frame specimen, the behavior of FRP panel in the steel frame specimen was evaluated. From the numerical analysis results, strength of the steel frame specimen with FRP panel was governed by FRP panel. Also, diagonal compression behavior governed the FRP panel in the steel frame specimen in the numerical analysis results.
A behavior of FRP(Fiber Reinforced Polymer) panel in a steel frame structure was evaluated through the finite element analysis in this study. In order to numerical analysis, a experimental test results was used to develop a three dimensional finite element model of steel frame specimen. Numerical results of the steel frame specimen was well predicted the experimental behavior of steel frame specimen. Based on the developed three dimensional finite element model of steel frame specimen, the behavior of FRP panel in the steel frame specimen was evaluated. From the numerical analysis results, strength of the steel frame specimen with FRP panel was governed by FRP panel. Also, diagonal compression behavior governed the FRP panel in the steel frame specimen in the numerical analysis results.
This study investigates the safety and life during the fatigue load by the configuration of seat frame. On back frame at seat frame, the life and damage are analyzed. The deformation and equivalent stress are compared with each other through the vibration analysis, The result of this study through the analysis can be applied to develop the automotive seat frame with durabilty and safety.
The roof grid of single-layer space frame structure, for Energy Core of Incheon Airport Second Terminal, is very simple and aesthetic, but it is apt to buckle under external force because of mild curvature and complex shape. The object of this study is to estimate the stability of single-layer space frame structures for Energy Core of Incheon Airport Second Terminal with the analytical conditions of structural design. The results show that the buckling load of model(pin-pin, uniform load, rigid joint), that is, the most similar model to the analytical conditions of structural design. was 10.7kN/㎡.
In this study, shaking table test has been carried out for the dual frame passive control system for seismic performance verification of the proposed system. The proposed system was separated into two independent frameworks that are strength resistant core and frame structure by connecting to the damper. Moreover, the seismic performance improvement of the proposed system has been verified by comparing and analyzing the experimental results of the proposed system with an existing core system. As a result of the shaking table test, acceleration and displacement responses of dual-frame vibration control system are decreased than those of the existing strength resistant type core system. In the case of the core system, while the damage was concentrated on the column of first floor, the damage of the dual system was dispersed in each layer. The damage also was concentrated on the damper, almost no damage occurs to the structural members. It has been emphasized that installed dampers in the proposed dual system reduce the input energy of whole structure by absorbing seismic input energy, which leads overall system damage to be reduced.
The latest weight reduction research of automotive industry and technology was improved. In this paper, we aim to evaluate the composite frame to manufacture the floor assembly of commercial vehicle. The design of subframe incorporated into the floor module was determined by FEM(Finite Element Method) simulation. The mechanical properties used for the simulations were obtained from the tests for samples of glass fiber/epoxy composites. We made two kinds of pultrusion products, one was aluminum profile, the other was unidirectional composites with aluminum profile. Based on the results from the simulation and bending test, the design of the subframe was finally determined prior to adoption of the commercial vehicle floor.
The research is to verify by experiments whether the steel truss structure is able to withstand the load of cement bricks of upper part of a door for the safe use of lightweight steel truss structure instead of concrete lintel which is to be installed at upper part of door frame in building cement bricks for apartment construction. The steel truss is designed in order not to disturb bricks-building and the shape of structure was verified by bending test. According to experiments result, camber was applied to steel structure that enabled construction work to be improved and was proved effective for the prevention of accidents by cement bricks-building load test.
본 연구에서는 복강판-모듈러 시스템과 같이 구조 기준에 명시되지 않은 새로운 시스템의 반응수정계수를 산정하는 절차를 제안하였다. 기본 개념은 구조성능 실험결과를 바탕으로 모델링 된 시스템의 비선형 정적 해석 곡선으로부터 세부 구성요소인 초과강도계수와 연성계수의 도출하고, 단자유도 시스템으로 간주하고 평가된 반응수정계수를 다자유도 동적 거동을 고려한 다자유도 밑면전단 수정계수로 수정하여 시스템의 최종적인 반응수정계수를 결정하는 것이다. 제안한 절차에 따라 이중골조시스템으로 설계된 2층부터 5층까지의 복강판-모듈러 시스템에 대해 평가한 결과, 최종적인 반응수정계수는 5층(층고 4m기준)을 복강판-모듈러 시스템의 적용 가능한 층수의 상한으로 하여 4로 결정하는 것이 타당할 것으로 판단하였다.
The purpose of this study is to reconstruct the wooden frame structure of Buddhist temple, Kumdang in Youngamsaji which assumed to be built in the 9th century of Unified Silla Dynasty. The remaining site of Kumdang in Youngamsaji is investigated thoroughly with a particular attention to bay size and column distribution. The five ancient Buddhist temples which were built in the same period also have the same frame type as Youngamsaji Kumdang. These five ancient Buddhist temples and Kumdang in Youngamsaji are meticulously investigated in terms of their bay sizes and measuring modules. The framework schema is devised as a conceptual tool to conjecture wooden frame structures of Buddhist temple. A theoretical differentiation between frame type and frame structure is attempted to formulated a wooden frame structure as a stepping-stone for the reconstruction of traditional wooden building. The wooden frame structure of 9C Kumdang in Youngamsaji mainly follows the oldest Korean wooden pavilion, Muryangsujeon in Busuk temple, with a hip and gable roof. The wooden frame structure of 9C Kumdang in Youngamsaji is reconstructed through 3D computer modeling to such an extent that every wooden components of the structure can be 3D printed. The reconstruction also takes reference from the Cai-Fen system in Yingzao Fashi.
The Crime Prevention Net(CPN) means an integrated model for crime prevention that forms the structure like a close meshed net by making use of the various crime prevention strategies and by collaborate participation of multi-groups. This CPN Model includes three realms, namely the realm of criminal-tendency deterrence, the realm of the criminal opportunity reduction and the realm of recidivists management. The strategies in criminal-tendency deterrence realm are the treatments for individuals with biological or psychological predisposition to crime, the interventions in the process of individual's socialization and the developments of the overall social structure and surroundings. The criminal opportunity reduction strategy is situational crime prevention strategy, such as CPTED, teaching techniques to avoid being a victim of crime, formal surveillance by policemen's patrol and so on. The recidivists management strategies are the management of information of recidivists, parolees and offenders who are under the probation. The CPN is constructed by the obligatory participants and the various strategies and the police play a central role in the CPN : searching and analyzing on the criminal environment in the community, finding accurately the capable resources in the community, selecting participants which forms CPN, designing CPN suitable to the community, coordinating the function of participants, educating the strategies of crime prevention to the participants.
본 연구에서는 큰느타리버섯 재배사의 환경조절을 최적화하고 시스템 설계에 대한 기초자료를 얻기 위하여 진주인근에 위치한 샌드위치패널을 이용한 영구형 재배사 2동을 대상으로 2003년 11월부터 2005년 10월까지 재배사 내부에서 측정한 환경인자들을 중심으로 검토하였다. 실험지역의 외기온은 평년의 것과 대체로 비슷한 경향을 보였다. 시스템 변경전의 경우, 동절기에는 전체적으로 설정온도보다 낮게 유지되었고, 또 최상부와 최하부의 최대온도 편차도 5.1℃ 정도로 상층이 가장 높게 나타났다. 그러나 시스템의 변경 후의 경우, 난방시 대체로 설정온도 범위에서 조절되는 경향을 보였고, 공기정체나 온도층의 역전현상이 나타나지 않았다. 상대습도는 시스템 변경 후, 80~100% 정도의 범위로서 권장상대습도 범위에 있었다. 전체 재배기간동안 탄산가스 농도는 400~3,300mg·L-1 정도의 범위에 있었다. 조도는 권장조도보다 전반적으로 낮게 유지되고 있음을 알 수 있었고, 산도는 대체로 일정하게 유지되었다. 수확량은 전체적으로 일정하지 않았고, 포기재배의 경우가 상대적으로 등외품이 적었으며, 증수 효과도 있었다. 전력소비량은 계절별로 일정한 경향이 있음을 알 수 있었고, 하절기보다 동절기에 전력소비량이 현저히 많은 것을 확인 할 수 있었다.