A new fumigant, carbonyl sulfide (COS), has potential for use as a replacement for methyl bromide, yet its mechanism of toxicity to insects remains poorly understood. In this study, transcriptome analysis was performed on Tribolium castaneum malpighian tubules and fat bodies, which are known to play an essential role in energy storage and utilization in insect species. In total, upon exposure to COS, 3,034 and 2,973 genes were differentially expressed in the T. castaneum malpighian tubules and fat body, respectively. These differentially expressed genes comprise a significant number of detoxification-related genes, including 105 P450s, 18 glutathione S-transferases (GSTs), 82 ABC transporters, 25 UDP-glucosyltransferases and 42 carboxylesterases and mitochondrial–related genes, including 9 complex Ⅰ genes, 2 complex Ⅱ genes, 1 complex Ⅲ gene, 9 complex IV genes, 8 complex V genes from both malpighian tubules and fat body tissues. Moreover, KEGG analysis demonstrated that the upregulated genes were enriched in xenobiotic metabolism by ABC transporters and drug metabolism by other enzymes. We also investigated the role of carbonic anhydrases (CAs) in toxicity of COS using dsRNA treatment in T. castaneum. These results show that CA genes have a key role in toxicity of the COS. Furthermore, the results of transcriptomic analysis provide new insights into the insecticidal mechanism of COS fumigation against T. castaneum and eventually contribute to the management of this important stored grain pests.
Odontogenic cells express many genes spatiotemporally through complex and intricate processes during tooth formation. Therefore, investigating them during the tooth development has been an important subject for the better understanding of tooth morphogenesis. The present study was performed to identify the genetic profiles which are involved in the morphological changes during the different stages of rat tooth development using the Agilent Rat Oligonucleotide Microarrays. Morphologically, the maxillary 3rd molar germ at 10 days post-partum (dpp) was at the cap/bell stage. In contrast, the maxillary 2nd molar germ showed the root development stage. After microarray analysis, there were a considerable number of up- or down-regulated genes in the 3rd and the 2nd molar germ cells during tooth morphogenesis. Several differentially expressed genes for nerve supply were further studied. Among them, neuroligin 1 (Nlgn 1) was gradually downregulated during tooth development both at the transcription and the translation level. Also, Nlgn 1 was mostly localized in the dental sac, which is an important component yielding the nerve supply. This genetic profiling study proposed that many genes may be implicated in the biological processes for the dental hard tissue formation and, furthermore, may allow the identification of the key genes involved in the nerve supply to the dental sac.
In order to investigate genetic stability and gene expression profile after cloning procedure, two groups of cloned pigs were used for swine leukocyte antigen (SLA) gene nucleotide alteration and microarray analyses. Each group was consist of cloned pigs derived from same cell line (n=3 and 4, respectively). Six SLA loci were analyzed for cDNA sequences and protein translations. In total, 16 SLA alleles were identified and there were no evidence of SLA nucleotide alteration. All SLA sequences and protein translations were identical among the each pig in the same group. On the other hand, microarray assay was performed for profiling gene expression of the cloned pigs. In total, 43,603 genes were analyzed and 2,150~4,300 reliably hybridized spots on the each chip were selected for further analysis. Even though the cloned pigs in the same group had identical genetic background, 18.6~47.3% of analyzed genes were differentially expressed in between each cloned pigs. Furthermore, on gene clustering analysis, some cloned pigs showed abnormal physiological phenotypes such as inflammation, cancer or cardiomyopathy. We assumed that individual environmental adaption, sociality and rank in the pen might have induced these different phenotypes. In conclusion, the results of the present study indicate that SLA locus genes appear to be stable following SCNT. However, gene expressions and phenotypes between cloned pigs derived from the same cell line were not identical even under the same rearing conditions.
Osteoarthritis is one of the commonest causes associated with age-related damage of articular cartilage. Non-steroidal anti-inflammatory drugs are commonly used in osteoarthritic patient. However, long term administration of these drugs results gastrointestinal disorders. Though, most studies have demonstrated in the past that bee venom has therapeutic effect on diseases related to inflammation and pains, but its anti-inflammatory properties have not been so far studied on inflamed chondrocytes (LPS induced) invitro. For the purpose, the study was carried out to determine the effect of bee venom on porcine articular chondrocyte cell using microarray. In this study, we found that 2,235 significantly associated gene (1,404 up-regulated genes and 831 down-regulated genes) that were expressed on inflamed and non inflamed chondrocytes during proliferation. Among the 1,404 up-regulated genes and 831 down-regulated genes, known genes were 372 and 237, respectively. On the other hand, bee venom significantly reduced expression of fetuin involved in acute inflammatory reaction. Our results suggest that this study could be useful database in gene expression profiling of chondrocyte cell treated with bee venom.
Considering the great potential of iron chelators at inhibiting the proliferation of tumor cells, in order to determine the molecular and biological basis for the effects of iron chelator in oral cancer, we investigated the effects of iron chelator, desferrioxamine (DFO), on the gene profiling analysis of immortalized human oral keratinocytes (IHOK), and oral cancer cells (HN12), using the cDNA microarray. We identified 46 clones cDNA exhibiting more than 2 fold overexpression in DFO treated IHOK and HN12 cells, and 94 cDNA reveal more than 2 fold down-regulated expression. Examination of gene expression that differs between DFO treated vs. control IHOK and HN12 cells apprear to be related to : cell cycle regulator, cell growth and apoptosis, signal transduction and stress. p21 for cell cell cycle factor was upregualted, and cyclin-cdk gene was decreased expression, so we observed cell cycle arrest in DFO treated IHOK and HN12 cells. In tumor growth, we have identified downregulation of hemidesmosomal protein (bullous pemphigoid antigen 1) and epiregulin expression in DFO treated IHOK and oral cancer cells. Signal transducers including mitogen-activated protein kinase-activated protein kinase 5, serine/thereonine kinase 6 were downregulated with DFO treated cells, suggesting the DFO regulates the p38 MAP kianse pathway in immortalized and maignant oral keratincytes. In conclusion, we have demonstrated the high-throughput utility of cDNA array hybridization in parallel to the gene expression analysis to identify genes that are expressed differentially in DFO treated with immortalized and malignant oral keratinocytes. The differentially expressed genes identified here should be informative in DFO-induced anti-cancer effects.
To investigate the differential expression of genes by 635nm LEDs irradiation in arachidonic acid-treated human gingival fibroblasts, cDNA microarray was carried out. Human gingival fibroblasts were primary cultured and arachidonic acid was treated to induce inflammation. 635nm of wave length was used for LEDs irradiation. The experimental group was categorized into four group ; control, only LEDs irradiation group, only arachidonic acid-treated group and arachidonic acid-treated with LEDs irradiation group. The expression of 8,078 genes were increased and the expression of 7,103 genes were decreased in only LEDs irradiation group. For arachidonic acid-treated with LEDs irradiation group, the expression of 6,815 genes were increased, while the expression of 8,031 genes were decreased comparing with only arachidonic acid-treated group. IL-13alpha2 receptor was the most expressed gene in LEDs irradiation group comparing with control, followed by MMP3. Genes which the most down regulated was BIRC3 in LEDs irradiation group. PLAB genes was the most up-regulated in arachidonic acid treated with LEDs irradation group, followed by ranked RARRES1. Considering the classification by cell function, genes associated with signal transduction were the most affected by LEDs irradiation, followed by the genes associated with nucleoside, nucleotide and nucleic acid metabolism. In arachidonic acid treated with LEDs irradiation, genes associated with signal transduction and protein metabolism were affected. Taken together, LEDs irradiation could affect various biological process and could identify many genes related to LEDs irradiation, which could be used for clinical application.
A novel indirubin analog, 5'-nitro-indirubinoxime inhibits cell proliferation and induces apoptosis against various human cancer cells. In this study, we performed the microarray analysis to identify genes differentially expressed in the KB oral squamous carcinoma cells after treated with 5'-nitro-indirubinoxime. Among the 10,800 genes analyzed, 1,701 genes (15.8%) showed statistically different expression level in the 5'-nitro-indirubinoxime treated cells with respect to untreated control cells. Among those, 263 genes (15.5%) were down-regulated and 220 genes (12.9%) were up-regulated more than 2-fold. Functionally related gene clusters include genes associated with signal transduction (18.1%), especially genes related with apoptosis (3.5%) and cell cycle regulation (5.8%). Our application of microarray analysis on 5'-nitro-indirubinoxime treated oral cancer cells allows the identification of candidate genes for providing novel insights into the indirubin mediated antitumor activity.
A novel indil‘ubin analog‘ 5’ nitro-indirubinoxime(Ol1) inhibits cell proliferation and induces apoptosis again st variolls hllman cancer cell s. ln this stlldy, we performed the microarray analysis to identify genes diffel'enti ally expressed in the KB oral sqllamollS carcinoma cells after treatment with 011 Of the 10‘ 800 genes a nalyzed , 1700 genes(15.7%) showed di fferent expression level in the 011-treated cells with respect to untreated control cel1s Arnong those‘ 263 genes(15, 5%) were down -reg띠 ated and 220 genes(12, 9%) were IIp-regulated more than 2-fold, Functionally related gene clllsters inclllde genes associated with signal transdllction(18, 1%) , especially genes re lated with a poptosis(3, 5%) and cell cycle reglllation(5. 8%) . Our application of microarray ar뻐ysis on 01l-treated 01'외 cancer cells al lows the identifi cati on of candidate genes for providing novel insights into the 011-mediated anti -tllmor actl Vl ty ,
Microarray technology provides a unique tool for the determination of gene expression at the level of messenger RNA (mRNA). This study, the mRNA expression profiles provide insight into the mechanism of action of cadmium in Fleshy shrimp (Fenneropenaeus chinensis). The ability of genomic technologies was contributed decisively to development of new molecular biomarkers and to the determination of new possible gene targets. Also, it can be approach for monitoring of trace metal using oligo-chip microarray-based in potential model marine user level organisms.
15K oligo-chip for F. chinensis that include mostly unique sets of genes from cDNA sequences was developed. A total of 13,971 spots (1,181 mRNAs up- regulated and 996 down regulated) were identified to be significantly expressed on microarray by hierarchical clustering of genes after exposure to cadmium for different conditions (Cd24-5000 and Cd48-1000). Most of the changes of mRNA expression were observed at the long time and low concentration exposure of Cd48-1000. But, gene ontology analysis (GO annotation) were no significant different between experiments groups. It was observed that mRNA expression of main genes involved in metabolism, cell component, molecular binding and catalytic function. It was suggested that cadmium inhibited metabolism and growth of F. chinensis .
Susceptible Vitis vinifera responds to Xylella infection with a massive redirection of gene transcription. This transcriptional response is characterized by increased transcripts for phenlypropanoid and flavonoid biosynthesis, ethylene production, adaptation to oxidative stress, and homologs of pathogenesis related (PR) proteins, and decreased transcripts for genes related to photosynthesis. In addition, the results suggest that susceptible genotypes respond to Xylella infection by induction of limited, but inadequate, defense response. We also compared the transcriptional and physiological response of plants treated by pathogen infection, low or moderate water deficit, or a combination of pathogen infection and water deficit. Although the transcriptional response of plants to Xylella infection was distinct from the response of healthy plants to moderate water stress, we observed synergy between water stress and disease, such that water stressed plants exhibit a stronger transcriptional response to the pathogen. This interaction was mirrored at the physiological level for aspects of water relations and photosynthesis, and in terms of the severity of disease symptoms and pathogen colonization, providing a molecular correlation of the classical concept with the disease triangle.