검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 14

        1.
        2024.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, we have designed a novel gas inlet structure for efficient usage of growth and doping precursors. Our previous gas injection configuration is that the gas is mixed to one pipe first, then divided into two pipes, and finally entered the chamber symmetrically above the substrate without a jet nozzle. The distance between gas inlet and substrate is about 14.75 cm. Our new design is to add a new tube in the center of the susceptor, and the distance between the new tube and substrate is about 0.5 cm. In this new design, different gas injection configurations have been planned such that the gas flow in the reactor aids the transport of reaction species toward the sample surface, expecting the utilization efficiency of the precursors being improved in this method. Experiments have shown that a high doping efficiency and fast growth could be achieved concurrently in diamond growth when methane and diborane come from this new inlet, demonstrating a successful implementation of the design to a diamond microwave plasma chemical vapor deposition system. Compared to our previous gas injection configuration, the growth rate increases by 15-fold and the boron concentration increases by ~ 10 times. COMSOL simulation has shown that surface reaction and precursor supply both have a change in determining the growth rate and doping concentration. The current results could be further applied to other dopants for solving the low doping efficiency problems in ultra-wide-band-gap semiconductor materials.
        4,600원
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Lead-free perovskite ceramics, which have excellent energy storage capabilities, are attracting attention owing to their high power density and rapid charge-discharge speed. Given that the energy-storage properties of perovskite ceramic capacitors are significantly improved by doping with various elements, modifying their chemical compositions is a fundamental strategy. This study investigated the effect of Zn doping on the microstructure and energy storage performance of potassium sodium niobate (KNN)-based ceramics. Two types of powders and their corresponding ceramics with compositions of (1-x)(K,Na)NbO3-xBi(Ni2/3Ta1/3)O3 (KNN-BNT) and (1-x)(K,Na)NbO3-xBi(Ni1/3Zn1/3Ta1/3) O3 (KNN-BNZT) were prepared via solid-state reactions. The results indicate that Zn doping retards grain growth, resulting in smaller grain sizes in Zn-doped KNN-BNZT than in KNN-BNT ceramics. Moreover, the Zn-doped KNNBNZT ceramics exhibited superior energy storage density and efficiency across all x values. Notably, 0.9KNN-0.1BNZT ceramics demonstrate an energy storage density and efficiency of 0.24 J/cm3 and 96%, respectively. These ceramics also exhibited excellent temperature and frequency stability. This study provides valuable insights into the design of KNNbased ceramic capacitors with enhanced energy storage capabilities through doping strategies.
        4,000원
        3.
        2020.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The two key variables of an Si solar cell, i.e., emitter (n-type window layer) and base (p-type substrate) doping levels or concentrations, are studied using Medici, a 2-dimensional semiconductor device simulation tool. The substrate is ptype and 150 μm thick, the pn junction is 2 μm from the front surface, and the cell is lit on the front surface. The doping concentration ranges from 1 × 1010 cm−3 to 1 × 1020 cm−3 for both emitter and base, resulting in a matrix of 11 by 11 or a total of 121 data points. With respect to increasing donor concentration (Nd) in the emitter, the open-circuit voltage (Voc) is little affected throughout, and the short-circuit current (Isc) is affected only at a very high levels of Nd, exceeding 1 × 1019 cm−3, dropping abruptly by about 12%, i.e., from Isc = 6.05 × 10−9 A·μm−1, at Nd = 1 × 1019 cm−3 to Isc = 5.35 × 10−9 A·μm−1 at Nd = 1 × 1020 cm−3, likely due to minority-carrier, or hole, recombination at the very high doping level. With respect to increasing acceptor concentration (Na) in the base, Isc is little affected throughout, but Voc increases steadily, i.e, from Voc = 0.29 V at Na = 1 × 1012 cm−3 to 0.69 V at Na = 1 × 1018 cm−3. On average, with an order increase in Na, Voc increases by about 0.07 V, likely due to narrowing of the depletion layer and lowering of the carrier recombination at the pn junction. At the maximum output power (Pmax), a peak value of 3.25 × 10−2 W· cm−2 or 32.5 mW· cm−2 is observed at the doping combination of Nd = 1 × 1019 cm−3, a level at which Si is degenerate (being metal-like), and Na = 1 × 1017 cm−3, and minimum values of near zero are observed at very low levels of Nd ≤ 1 × 1013 cm−3. This wide variation in Pmax, even within a given kind of solar cell, indicates that selecting an optimal combination of donor and acceptor doping concentrations is likely most important in solar cell engineering.
        4,000원
        4.
        2019.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The gas response characteristic toward C2H5OH has been demonstrated in terms of copper-vacancy concentration, hole density, and microstructural factors for undoped/Li(I)-doped CuO thin films prepared by sol-gel method. For the films, both concentrations of intrinsic copper vacancies and electronic holes decrease with increasing calcination temperature from 400 to 500 to 600 oC. Li(I) doping into CuO leads to the reduction of copper-vacancy concentration and the enhancement of hole density. The increase of calcination temperature or Li(I) doping concentration in the film increases both optical band gap energy and Cu2p binding energy, which are characterized by UV-vis-NIR and X-ray photoelectron spectroscopy, respectively. The overall hole density of the film is determined by the offset effect of intrinsic and extrinsic hole densities, which depend on the calcination temperature and the Li(I) doping amount, respectively. The apparent resistance of the film is determined by the concentration of the structural defects such as copper vacancies, Li(I) dopants, and grain boundaries, as well as by the hole density. As a result, it is found that the gas response value of the film sensor is directly proportional to the apparent sensor resistance.
        4,000원
        5.
        2019.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We investigate the characteristics of self-assembled quantum dot infrared photodetectors(QDIPs) based on doping level. Two kinds of QDIP samples are prepared using molecular beam epitaxy : n+-i(QD)-n+ QDIP with undoped quantum dot(QD) active region and n+-n−(QD)-n+ QDIP containing Si direct doped QDs. InAs QDIPs were grown on semi-insulating GaAs (100) wafers by molecular-beam epitaxy. Both top and bottom contact GaAs layer are Si doped at 2×1018/cm3. The QD layers are grown by two-monolayer of InAs deposition and capped by InGaAs layer. For the n+-n−(QD)-n+ structure, Si dopant is directly doped in InAs QD at 2×1017/cm3. Undoped and doped QDIPs show a photoresponse peak at about 8.3 μm, ranging from 6~10 μm at 10 K. The intensity of the doped QDIP photoresponse is higher than that of the undoped QDIP on same temperature. Undoped QDIP yields a photoresponse of up to 50 K, whereas doped QDIP has a response of up to 30 K only. This result suggests that the doping level of QDs should be appropriately determined by compromising between photoresponsivity and operating temperature.
        4,000원
        6.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Bi2Te3 related compounds show the best thermoelectric properties at room temperature. However, n-type Bi2Te2.7Se0.3 showed no improvement on ZT values. To improve the thermolectric propterties of n-type Bi2Te2.7Se0.3, this research has Cu-doped n-type powder. This study focused on effects of Cu-doping method on the thermoelectric properties of n-type materials, and evaluated the comparison between the Cu chemical and mechanical doping. The synthesized powder was manufactured by the spark plasma sintering(SPS). The thermoelectric properties of the sintered body were evaluated by measuring their Seebeck coefficient, electrical resistivity, thermal conductivity, and hall coefficient. An introduction of a small amount of Cu reduced the thermal conductivity and improved the electrical properties with Seebeck coefficient. The authors provided the optimal concentration of Cu0.1Bi1.99Se0.3Te2.7. A figure of merit (ZT) value of 1.22 was obtained for Cu0.1Bi1.9Se0.3Te2.7 at 373K by Cu chemical doping, which was obviously higher than those of Cu0.1Bi1.9Se0.3Te2.7 at 373K by Cu mechanical doping (ZT=0.56) and Cu-free Bi2Se0.3Te2.7 (ZT=0.51).
        4,000원
        7.
        2012.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To compare the photocatalytic performances of titania for purification of waste water according to applied voltages and doping, TiO2 films were prepared in a 1.0 M H2SO4 solution containing NH4F at different anodic voltages. Chemical bonding states of F-N-codoped TiO2 were analyzed using surface X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of the co-doped TiO2 films was analyzed by the degradation of aniline blue solution. Nanotubes were formed with thicknesses of 200-300 nm for the films anodized at 30 V, but porous morphology was generated with pores of 1-2 μm for the TiO2 anodized at 180 V. The phenomenon of spark discharge was initiated at about 98 V due to the breakdown of the oxide films in both solutions. XPS analysis revealed the spectra of F1s at 684.3 eV and N1s at 399.8 eV for the TiO2 anodized in the H2SO4-NH4F solution at 180 V, suggesting the incorporation of F and N species during anodization. Dye removal rates for the pure TiO2 anodized at 30 V and 180 V were found to be 14.0% and 38.9%, respectively, in the photocatalytic degradation test of the aniline blue solution for 200 min irradiation; the rates for the F-N-codoped TiO2 anodized at 30 V and 180 V were found to be 21.2% and 65.6%, respectively. From the results of diffuse reflectance absorption spectroscopy (DRS), it was found that the absorption edge of the F-N-codoped TiO2 films shifted toward the visible light region up to 412 nm, indicating that the photocatalytic activity of TiO2 is improved by appropriate doping of F and N by the addition of NH4F.
        4,000원
        8.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Tantalum nitrides () have been developed to substitute the Cd based pigments for non-toxic red pigment. Various doping elements were doped to reduce the amount of high price Tantalum element used and preserve the red color tonality. Doping elements were added in the synthesizing process of precursor of amorphous tantalum oxides and then Tantalum nitrides doped with various elements were obtained by ammonolysis process. The average particle size of final nitrides with secondary phases was larger than the nitride without the secondary phases. Also secondary phases reduced the red color tonality of final products. On the other hand, final nitrides without secondary phase had orthorhombic crystal system and presented good red color. In other words, in the case of nitrides without secondary phases, doping elements made a solid solution of tantalum nitride. In this context, doping process controlled the ionic state of nitrides and the amount of oxygen/nitrogen in final nitrides affected the color tonality.
        4,000원
        9.
        2009.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In high-efficiency Cu(In,Ga)Se2 solar cells, Na is doped into a Cu(In,Ga)Se2 light-absorbing layer from sodalime-glass substrate through Mo back-contact layer, resulting in an increase of device performance. However, this supply of sodium is limited when the process temperature is too low or when a substrate does not supply Na. This limitation can be overcome by supplying Na through external doping. For Na doping, an NaF interlayer was deposited on Mo/glass substrate. A Cu(In,Ga)Se2 absorber layer was deposited on the NaF interlayer by a three-stage co-evaporation process As the thickness of NaF interlayer increased, smaller grain sizes were obtained. The resistivity of the NaF-doped CIGS film was of the order of 103Ω·cm indicating that doping was not very effective. However, highest conversion efficiency of 14.2% was obtained when the NaF thickness was 25 nm, suggesting that Na doping using an NaF interlayer is one of the possible methods for external doping.
        4,000원
        10.
        2008.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Mg-doped and In-Mg co-doped p-type GaN epilayers were grown in a low-pressure metal organic chemical vapor deposition technique. The effect of In doping on the p-GaN layer was studied through photoluminescence (PL), persistent photoconductivity (PPC), and transmission electron microscopy (TEM) at room temperature. For the In-doped p-GaN layer, the PL intensity increases significantly and the peak position shifts to 3.2 eV from 2.95 eV of conventional p-GaN. Additionally, In doping greatly reduces the PPC, which was very strong in conventional p-GaN. A reduction in the dislocation density is also evidenced upon In doping in p-GaN according to TEM images. The improved optical properties of the In-doped p-GaN layer are attributed to the high crystalline quality and to the active participation of incorporated Mg atoms.
        3,000원
        13.
        1996.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        저압 유기금속 화학증착법을 사용하여 AIGaInP층의 diethylzinc의 III족 원소(AO, Ga, In)에 대한 비와 성장온도 변화에 따른 Zn(acceptor)의 첨가 농도특성을 연구하였다. Diethylzinc의 III족 원소(AI, Ga, In)비를 0.4에서 2.0까지 변화시켜 본 결과 0.85일 때 가장 높은 acceptor 농도를 가졌으며, 성장온도를 690˚C에서 800˚C까지 변화시킨 결과 성장온도에 대한 변화는 690˚C-730˚C일 때 온도가 증가함에 따라 acceptor농도는 커졌으며, 그 이상에서는 감소하였다. 또한, 성장속도가 빠를수록 높은 acceptor 농도를 가지게 되어 3.3μm/hr의 성장속도일 때 8x1017/㎤의 가장 높은 acceptor 농도를 얻을수 있다.
        4,000원
        14.
        1995.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        UO2-6wt%Gd2O3가연성 독물질 소결체에 미량첨가한 Al 화합물(Al(OH)3, ADS(aluminium disterate), Al(OH)3+ADS)이 소결성 및 미세조직에 미치는 영향을 고찰하고자 하였다. 이를 위하여 Al이 첨가된 UO2-6wt%Gd2O3압분체를 1700˚C, 수소 분위기에서 4시간동안 소결한 후 특성시험을 수행하였다 Al을 첨가한 UO2-6wt%Gd2O3의 소결밀도는 94% T.D.이상이였고, ADS를 이용한 Al 첨가가 개기공도 감소에 상대적으로 크게 기여하였다. 또한 Al을 첨가하면 10μm 이상의 큰 기공과 1μm 이하의 작은 기공은 많이 줄어들었고 첨가된 Al 화합물의 종류와는 무관하게 평균 기공크기는 2-3μm였다. 그리고 Al을 첨가하지 않은 소결체의 결정립은 이중 결정립 형태를 갖는 반면에 Al을 첨가하면 결정립은 균일하였다. 특히, ADS를 첨가한 소결체의 평균 결정립 크기는 4.6μm로 가장크게 증가하였다.
        4,000원