생태계 내에서 일어나는 모든 현상은 매우 느리고 긴 시간에 걸쳐서 이루어진다. 그렇기에 생태계 내에서 일어나는 현상을 이해하고 연구하기 위해 장기생태연구가 필요하다. 현재 우리나라의 소나무는 단일 수종으로 가장 넓게 분포하 고 있으나 기후변화 및 음수로의 천이과정 등 다양한 요인에 의하여 변화가 예상된다. 변화과정에 대한 모니터링은 생태계 과정의 이해와 임분관리 등에 있어서 매우 중요한 부분을 차지하므로 장기생태모니터링구에 대한 매목조사와 변화상 분석을 실시하였다. 국가장기생태연구의 조사지로 구축된 지리산 소나무림(100m × 100m)을 대상으로 격년별 (2017년, 2019년, 2021년, 2023년) 4회 매목조사를 실시하였고, 매목조사자료를 바탕으로 밀도, 흉고단면적, 중요치, 직경급 분포, 수간건강상태, 고사율, 이입률 등의 분석을 실시하였다. 소나무개체군의 밀도는 6년 동안 292본/㏊에서 272본/㏊으로 6.8% 가량 감소하였고, 특히 비목나무는 6년 동안 161본/㏊에서 46본/㏊으로 71.4% 가량 크게 감소하였 다. 흉고단면적(㎡/㏊)은 비목나무를 제외한 모든 수종이 증가하였고 이에 따라 중요치는 비목나무만 감소하고 이외 모든 수종은 증가하거나 유지되는 경향으로 나타났다. 직경급 분포에서 전제 구성종은 10㎝ 미만의 직경급이 가장 높은 역 J자형을 보이고 소나무는 30-40㎝의 직경급의 개체목이 가장 많은 정규분포형을 보였다. 소나무의 수간건강상 태에서 AS가 2017년에 76.1%(252본/㏊)로 가장 높게 나타났지만 AL과 DF의 증가로 인해 2023년에 ㏊당 63.4%(210 본/㏊)로 12.8%(42본/㏊)감소하였다. 소나무의 6년간 연평균고사율은 1.18%, 연평균이입률은 진계목이 발생하지 않아 나타나지 않았다. 그러나 비목나무의 6년간 연평균고사율은 19.75%로 높게 나타났다. 지리산 소나무림의 소나무 개체 군 밀도는 감소하나 흉고단면적, 중요치는 유지되어 양호한 생육상태인 것으로 나타났지만 진계목이 발생하지 않았고 이는 소나무가 양수의 특성에 기인된 것으로 판단되었다. 앞으로 소나무개체군, 비목나무개체군, 삼나무개체군, 굴참나 무개체군 등 개체군 변화에 대한 지속적인 후속 연구가 필요할 것으로 판단되었다.
LIn this study, we investigated the habitat characteristics of a Jeonju Duckjin lake in Jeonju City, Jeonbuk, in which a large group of reeve’s turtle(Mauremys reevesii)(endangered species Class II and natural monument No. 453 in Korea) was discovered. The lake where reeve’s turtle(M. reevesii) was discovered, was beside Jeonbuk National university. That lake was surrounded by lotuses, dam, and reeds. We found 12 reeve’s turtle(M. reevesii)(included with 2 juveniles), 30 red eared slider (Trachemys scripta elegans)(included with 4 juveniles), 22 river cooter(Pseudemys concinna)(included with 5 juveniles), and 6 Chinese stripe necked turtle(Mauremys sinensis)(included with 4 juveniles) from June to September, 2024, respectively. A number of red-eared sliders(Trachemys scripta elegans) which threaten the survival of reeve’s turtle(M. reevesii), were also found in and around the lake. Newborn turtles in this year were not observed. However, we estimated that natural breeding had sufficiently occurred since we observed many young turtles in the lake. Furthermore, the presence of young red-eared slider individuals can be a persistent problem for reeve’s turtle(M. reevesii) as they are competing species. In conclusion, in-situ conservation method should be considered for protecting the endangered turtle and their habitat.
본 연구는 일본잎갈나무 임분의 지위지수식을 도출하고, 지위지수별 연평균생장량의 차이 및 연평균생장량을 구할 수 있는 추정식을 도출하고자 수행되었다. 본 분석은 국가산림조사에서 일본잎갈나무림으로 판단된 표준지를 대상으로 하였으며, 이용된 표준지 개소수는 576개소였다. 지위지수는 Schumacher 모델을 적용시켜 도출하였으며, 이의 통계적 적합도는 59%였고, 편의는 –0.0002으로 아주 낮게 나타났다. 따라서 추정식은 활용에 있어 문제가 없을 것임을 확인할 수 있었다. 지위지수의 높고 낮음에 따라 연평균생장량의 평균값이 차이가 발생하는지 확인하기 위해 시도한 t-test는 5% 유의수준에서 유의성이 인정되었다. 그러므로 일본잎갈나무를 심을 때 적지적수에 조림한다면, 본 분석 결과와 같이 연평균생장량도 우수하게 될 것이다. 연평균생장량은 지위지수가 변함에 따라 발생할 수 있는 것이므로, 지위지수를 설명변수로 하는 연평균생장량 추정식이 국내 처음으로 도출되었다. 본 분석은 직선식, 곡선식, 지수식 등 5가지 수식을 적용시켰으며, 분석 결과, 식의 적합도 지수는 0.25∼0.26의 범위에 있었고, 편의는 –0.0002∼0.0016, 오차의 표준오차는 2.88∼2.92 인 것으로 나타났다. 도출된 5개 수식에 대해 지위지수를 X축으로 하는 잔차도를 그려본 결과, 잔차는 모두 “0”을 중심으로 고르게 분포하고 있어, 통계적 수치 등을 고려할 때 본 추정식은 충분히 사용 가능할 것이다.
There are now many seismic observatory stations, excluding the acceleration monitoring network for infrastructures, of more than 300 operated by several public and governmental organizations across South Korea. The features of the site and properties of the stations were not investigated, and they have been assumed or guessed to estimate the site-specific seismic responses during the 2016 Gyeongju and 2017 Pohang earthquake events. For these reasons, various and intensive geotechnical and geophysical investigations have been conducted to quantify the site characteristics at 15 seismic stations selected in southeastern Korea. The VS profiles were, at first, obtained by performing only a downhole seismic test (DHT) at 7 stations, and were compared with those from a surface wave method. Then, the shear wave velocity (VS) profiles were deduced by combining three types of in situ seismic methods composed of a cross-hole seismic test, DHTs, and full-waveform sonic loggings at the 8 other stations, especially to complement the application limits of DHT and reduce the depth-dependent uncertainty in VS profile. The representative site characteristic profiles for each station regarding VS and VP with borehole stratigraphy and density were determined based on robust investigations. Various site parameters related to seismic responses at the seismic stations of interest were obtained for the site-specific geotechnical information, which would be useful to earthquake engineering practices.
Deep geological repositories (DGR) count amongst the world largest environmental protection projects. They are the internationally advocated reference solution for the long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF). Many countries have engaged in programs to develop their own DGR. In Europe, four countries have passed the important milestone of choosing or announcing the appropriate site for the location of their HLW disposal facilities. Finland has almost finished the commissioning of its DGR and should start industrial disposal operations in 2025. Sweden has authorized the construction of its DGR and is finalizing the licensing document to start construction. France is reviewing the construction license application of its DGR. Switzerland has proposed the location of its DGR and is carrying out the production of the documentation for the license application. These four countries took decades to choose the location for their DGR. The length of this process is explained by 1) the amount of technical investigations and studies that were carried out to first identify, select and then fully characterize the suitable site and 2) the progressive decision-making process defined by their respective legal frameworks, including the participation and engagement of communities and stakeholders.
The damage to structures during an earthquake can be varied depending on the frequency characteristics of seismic waves and the geological properties of the ground. Therefore, considering such attributes in the design ground motions is crucial. The Korean seismic design standard (KDS 17 10 00) provides design response spectra for various ground classifications. If required for time-domain analysis, ground motion time series can be either selected and adjusted from motions recorded at rock sites in intraplate regions or artificially synthesized. Ground motion time series at soil sites should be obtained from site response analysis. However, in practice, selecting suitable ground motion records is challenging due to the overall lack of large earthquakes in intraplate regions, and artificially synthesized time series often leads to unrealistic responses of structures. As an alternative approach, this study provides a case study of generating ground motion time series based on the hybrid broadband ground motion simulation of selected scenario earthquakes at sites in the Nakdonggang delta region. This research is significant as it provides a novel method for generating ground motion time series that can be used in seismic design and response analysis. For large-magnitude earthquake scenarios close to the epicenter, the simulated response spectra surpassed the 1000-year design response spectra in some specific frequency ranges. Subsequently, the acceleration time series at each location were used as input motions to perform nonlinear 1D site response analysis through the PySeismoSoil Package to account for the site response characteristics at each location. The results of the study revealed a tendency to amplify ground motion in the mid to long-period range in most places within the study area. Additionally, significant amplification in the short-period range was observed in some locations characterized by a thin soil layer and relatively high shear wave velocity soil near the upper bedrock.
Buseok Temple in Yeongju was established by Uisang of Silla at the end of the Three Kingdoms period in 676 under the order of the king. In 1849, An jeong-gu recorded in Sunheung-eupji that 'Galang Mountain : To the north of Bonghwang Mountain. Originally, it was the old site of Buseok Temple'. According to these records, the current Buseok Temple is not the Buseok Temple established by Uisang of Silla. The purpose of this study is to investigate and analyze ancient documents related to the relocation of Buseok Temple based on the records of Sunheung-eupji and to conduct an on-site survey based on them to find out the truth about the old site of Buseok Temple. As a result of the study, the records of the relocation of Buseok Temple were confirmed in the old literature. As a result of the on-site investigation, a basin of about 75,000m² was found in Mt. Gaegot, which is located north of Mount Bonghwang. And here, roof tiles of the late Goryeo Dynasty and early Joseon Dynasty were found. These findings suggest the possibility that this place is the old site of Buseok Temple.