검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 27

        1.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to investigate the impacts of extreme weather on the dry matter yield (DMY) of silage maize in South Korea. The maize data (n=3,041) were collected from various reports of the new variety of adaptability experiments by the Rural Development Administration (1978-2017). Eight weather variables were collected: mean temperature, low temperature, high temperature, maximum precipitation, accumulated precipitation, maximum wind speed, mean wind speed, and sunshine duration. These variables were calculated based on ten days within seeding to harvesting period. The box plot detected an outlier to distinguish extreme weather from normal weather. The difference in DMY between extreme and normal weather was determined using a t-test with a 5% significance level. As a result, outliers of high-extreme precipitation were observed in July and August. Low-extreme mean temperature was remarkable in middle May, middle June, and late July. Moreover, the difference in DMY between extreme and normal weather was greatest (5,597.76 kg/ha) during the maximum precipitation in early July. This indicates that the impact of heavy rainfall during the Korean monsoon season was fatal to the DMY of silage maize. However, in this study, the frequency of extreme weather was too low and should not be generalize. Thus, in the future, we plan to compare DMY with statistical simulations based on extreme distributions.
        4,200원
        2.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to investigate the Maillard reaction–related physicochemical properties of three maize varieties (Kwangpyeongok, Sinhwangok2ho and Gangdaok) after roasting them for different times (0, 15, 25, 40, and 55 minutes). The Maillard reaction is a non-enzymatic browning reaction involving reducing sugars and amino compounds. The content of reducing sugar, the causative agent of the Maillard reaction, decreased as roasting time increased. Gangdaok showed the lowest reducing sugar content of 1.04 mg/g after 55 minutes of roasting. In the elapsed roasting time, chromaticity ‘L’ and ‘b’ values decreased. At 55 minutes of roasting, wherein the Maillard reaction occurred most actively, Gangdaok showed the lowest ‘L’ value of 56.37 and the highest ‘a’ value of 7.60. Gangdaok had superior conditions for inducing the Maillard reaction compared to other varieties, and it is consider that 'flint–type', an endosperm characteristic, may have been the influencing agent. This study detected a total of 52 types of volatile aroma compounds (VACs), of which 28 were produced after roasting. Of the total VACs detected, 2-Formyl-5-methylfuran and 2-Furancarboxaldehyde accounted for 43.8~45.5% and have been confirmed to be the major VACs present in roasted maize. Most of the correlations between the Maillard reaction–related characteristics showed high correlation coefficients.
        4,200원
        3.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study was to verify the effect of pig slurry application with acidification and biochar on feed value, nitrogen use efficiency (NUE) of maize forage, and ammonia (NH3) emission. The four treatments were applied: 1) non-pig slurry (only water as a control, C), 2) only pig slurry application (P), 3) acidified pig slurry application (AP), 4) acidified pig slurry application with biochar (APB). The pig slurry and biochar were applied at a rate of 150 kg N ha-1 and 300 kg ha-1, respectively. The AP and APB treatments enhanced all feed values compared to C and P treatments. The NUE for plant N was significantly increased 92.1% by AP and APB treatment, respectively, compared to the P treatment. On the other hand, feed values were not significantly different between AP and APB treatments. The acidification treatment with/without biochar significantly mitigated NH3 emission compared to the P treatment. The cumulative NH3 emission throughout the period of measurement decreased by 71.4% and 74.8% in the AP and APB treatments. Also, APB treatment reduced ammonia emission by 11.9% compared to AP treatment. The present study clearly showed that acidification and biochar can reduce ammonia emission from pig slurry application, and pig slurry application with acidification and biochar exhibited potential effects in feed value, NUE, and reducing N losses from pig slurry application through reduction of NH3 emission.
        4,000원
        4.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study was to prove the effect of pig slurry application with charcoal on nitrogen use efficiency (NUE), feed value and ammonia (NH3) emission from maize forage. The four treatments were applied: 1) non-pig slurry (only water as a control), 2) only pig slurry application (PS), 3) pig slurry application with large particle charcoal (LC), 4) pig slurry application with small particle charcoal (SC). The pig slurry was applied at a rate of 150 kg N ha-1, and the charcoal was applied at a rate of 300 kg ha-1 regardless of the size. To determine the feed value of maize, crude protein, dry matter intake, digestible dry matter, total digestible nutrient, and relative feed value were investigated. All feed value was increased by charcoal treatment compared to water and PS treatment. Also, the NUE for plant N was significantly higher in charcoal treatments (LC and SC) compared to PS treatment. On the other hand, there is no significant difference for feed value and NUE between LC and SC. The NH3 emission was significantly reduced 15.2% and 27.9% by LC and SC, respectively, compared to PS. Especially, SC significantly decreased NH3 emission by 15% compared to LC. The present study clearly showed that charcoal application exhibited positive potential in nitrogen use efficiency, feed value and reducing N losses through NH3 emission.
        4,000원
        5.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 남부지역에서 사료용 옥수수(Zea mays L.)의 수량과 기후요인 간의 상관관계를 비교하기 위하여 수행하였다. 실험에 사용한 사료용 옥수수 품종은 광평옥이었으며, 2017년에서 2019년까지 3년간 경상남도(진주)와 전라남도(나주, 장흥)의 시험포장에서 각각 수행하였다. 사료용 옥수수의 평균 간장은 경상남도에서 250.1±52.9 cm로 전라남도의 215.2±25.2 cm 보다 유의적으로 더 높게 나타났다. 암이삭 평균 착수고의 경우에도 경상남도가 119.8±31.4 cm로 전라남도의 89.5±18.3 cm 보다 더 높게 나타났다. 옥수수의 평균 총 건물수량은 유의적 차이는 없었으나, 경상남도에서 16045±5012 kg·ha-1로 더 많았다. 이러한 차이는 옥수수 유식물 정착기인 5월 중의 유효적산온도와 강수량, 그리고 전 생육기간 중의 일조시간 등이 경상남도 지역이 더 많았기 때문으로 판단된다. 암이삭의 평균 건물수량은 경상남도가 6363±2728 kg·ha-1로 전라남도의 3998±2750 kg·ha-1 보다 더 많았는데, 이는 개화결실기 때의 평균 최고기온에 노출정도의 차이에 의한 것으로 추측된다. 사료용 옥수수의 기후요인과 건물수량과의 상관관계를 분석한 결과, 5월 강수량(0.54)과 6월 강수량(0.52), 그리고 8월 평균기온(0.60)과 8월 평균 최고기온(0.60)이 가장 높은 양의 상관관계를 나타내었으며, 경엽부 건물수량도 유사한 경향을 나타내었는데, 이는 초기 유식물 생육기의 강수량이 건물수량에 미치는 영향이 중요하며, 여름철 고온기인 8월의 기온이 C4작물인 옥수수의 생장에 중요한 요인으로 영향을 미친 것으로 판단된다. 또한 암이삭 건물수량은 웅수와 암이삭이 직접 대기에 노출되는 시기인 7월의 평균기온(-0.85)과 평균 최고기온(-0.79)과 음의 상관관계를 나타내어, 개화 수정기 때의 고온이 결실률에 영향을 미치는 중요한 요인임을 추측할 수 있었다. 향후 기후요소가 옥수수의 생육 및 생산성에 미치는 영향을 더욱 정확하게 분석하기 위한 데이터 축적을 위해서는 추가적인 후속 연구가 수행되어야 할 것으로 판단된다.
        4,000원
        6.
        2018.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We used the upland field rotated from matured rice paddy field, which have been used as a rice paddy field long time, for three years from 2015 to 2017. Therefore, this study was conducted for three main purposes. The first was to investigate yearly changes of growth and yield for waxy maize in the organic farming waxy maize at rice paddy-upland rotation system, the second was to investigate yearly changes of soil physical and chemical characteristics of rice paddy field soil in organic farming waxy maize at rice paddy-upland rotation system and the third was to select the suitable varieties for organic farming waxy maize at rice paddy-upland rotation. The test varieties were that 8 varieties of waxy maize of Mibaek 2, Ilmichal, Daehakchal, Chalok 4, Miheukchal, Eolrukchal 1, Heukjinjuchal, Heugjeom 2. For yearly yield, the highest yield was obtained in the first year of 949.6 kg, the second highest was in the third year of 680.6 kg 10a-1, while the second year was the lowest yield (675.4 kg 10a-1). Both varieties of Chalok 4 and Ilmichal showed the highest yield with about 900 kg 10a-1 in the threeyear average of 8 varieties. Solid phase of deep soil was 10% higher than that of top soil. Porosity rate of the top soil (54.7%) was higher than that of deep soil (49.4%), and the porosity in the third year was 2.7% higher than that of the first year. Soil organic matter content was significant different between soil depths and between three years. Soil solid and liquid phase decreased by 1.6% and 4.3%, respectively, compared to the first year, and the gas phase increased by 4.3%. The porosity of the third year was 2.7% higher than that of the first year. The soil organic matter content was 9.5 g kg-1 in the third year compared with 12 g kg-1 in the first year. It has also trend to decrease as the number of years rotated from rice paddy field increased. In the three-year average yields of Ilmichal and Chalok 4 were 898.1 kg 10a-1 and 891.6 kg 10a-1 respectively and the yield of Chalok 4 was greater than the other 7 varieties. We compared and selected the two best waxy maize varieties of Chalok 4 and Ilmichal for rice paddy-upland rotation. When we look at the yearly variation for waxy maize, Waxy maize yield was the highest in the first year and decreased year by year. Therefore, it would be better to restore upland field to rice paddy fields after the first year.
        4,000원
        7.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Waterlogging strongly affects maize (Zea mays L.) growth. It is necessary to find the screening method of waterlogging tolerant maize lines. This study was to investigate the growth characters at V3 stage of maize, when is very sensitive to waterlogging. Six Korean maize inbred lines were subjected to waterlogging at V3 stage for 30 days. The 30 days waterlogging treatment significantly reduced plant height, number of expanded leaves, and SPAD value, compared with the control plants. SPAD values were significantly different among the six inbred lines, KS140 was the highest. The dry matter accumulation of aerial and root part were significantly decreased by 30 days waterlogging. KS140 was the weightiest among inbred lines. The dry matter of adventitious root showed same trend. Waterlogging treatment significantly reduced to ear length and thickness, grains filling length, grain number per ear, and maize grain. Plant height, SPAD value, and number of fully-expanded leave showed high correlation with maize grain yield, but number of senescent leaves, dry matter of adventitious root and TR ratio did not, suggesting that the former three traits may be good indicator for evaluating 30-day waterlogging tolerance of maize inbred lines. KS164 was the highest yield by increasing of grains filling length and grain number per ear of among waterlogging inbred lines. According to the results, evaluation of maize waterlogging should be consider both early growth characteristics and resilience in the later growth stages.
        4,000원
        8.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        전 세계적으로 인구가 증가함에 따라 유전자변형(GeneticallyModified; GM) 작물의 생산 역시 가파르게 상승하고 있다.국내에서 GM 작물의 재배가 아직까지는 승인된 바가 없지만식품, 사료, 가공용으로 많은 양이 수입되고 있다. 1. 결과적으로 GMO의 수입이 매년 증가하여 수송과정이나가공과정에서 비의도적인 방출이 발생하며, 주변환경에서 자라고 있는 일반 재배품종으로의 유전자이동 등 국내 자연환경에 미칠 수 있는 영향이 우려되고 있다. 2. GM 작물 중 우리나라에 가장 많은 양이 수입되는 GM옥수수의 비의도적인 방출을 확인하기 위해 2009년 7월부터9월까지 국내 곡물항구와 사료공장을 중심으로 모니터링을 수행하였다. 3. 조사는 주로 개방된 항구의 곡물저장고 지역과 사료공장으로 가는 수송경로에서 옥수수 종자와 자라고 있는 옥수수식물체를 수집하여 진행되었다. 4. PCR 분석을 통해 14개의 GM 옥수수 식물체와 수집된종자를 발아시켜 얻은 식물체 샘플 26개에서 GM 옥수수 유전자가 발견되었다. 5. 낙곡에 의한 GM 옥수수 종자의 유출이나 식물체가 자연환경에서 자라고 있는 것이 우리나라의 생태계에 어떠한 영향을 줄지 예측하기는 어렵지만, 법적으로 GMO를 철저히 관리하도록 되어 있으며, 사회적으로도 수입 GMO를 안전하게 관리하고 있다는 인식을 높이기 위해 주기적인 GMO의 모니터링이 수행되어야 할 것으로 판단된다.
        4,000원
        10.
        2016.12 KCI 등재 서비스 종료(열람 제한)
        The objective of this study was to find a rapid determination of the hot air stress in maize (Zea mays L.) leaves using a portable chlorophyll fluorescence imaging instrument. To assess the photosynthetic activity of maize leaves, an imaging analysis of the photochemical responses of maize was performed with chlorophyll fluorescence camera. The observed chlorophyll imaging photos were numerically transformed to the photochemical parameters on the basis of chlorophyll a fluorescence. Chlorophyll a fluorescence imaging (CFI) method showed that a rapid decrease in maximum fluorescence intensity (Fm) of leaf occurred under hot air stress. Although no change was observed in the maximum quantum yield (Fv/Fm) of the hot air stressed maize leaves, the other photochemical parameters such as maximum fluorescence intensity (Fm) and Maximum fluorescence value (Fp) were relatively lowered after hot air stress. In hot air stressed maize leaves, an increase was observed in the nonphotoquenching (NPQ) and decrease in the effective quantum yield of photochemical energy conversion in photosystem II (Φ PSII). Thus, NPQ and ΦPSII were available to be determined non-destructively in maize leaves under hot air stress. Our results clearly indicated that the hot air could be a source of stress in maize leaves. Thus, the CFI analysis along with its related parameters can be used as a rapid indicating technique for the determining hot air stress in plants.
        11.
        2015.03 KCI 등재 서비스 종료(열람 제한)
        The photochemical characteristics were analyzed in the context of sowing time and different levels of fertilized nitrogen during the maize (Zea mays L.) growth. When maize was early sawn, the fluorescence parameters related with electrontransport, in photosystem II (PSII) and PSI, were effectively enhanced with the higher level of fertilized nitrogen. Highest values were observed in maize leaves grown in double Nfertilized plot. The photochemical parameters were declined in the progress of growth stage. In early growth stage, the fluorescence parameters were highest, and then reduced to about half of the parameters related with electron transport on PSII and PSI at middle and late growth stages. In 1/2 N plot, the photochemical energy dissipation was measured to 13% in term of active reaction center per absorbed photon resulting in decrease in performance index and driving force of electron. This decrease induced to lower the photochemical effectiveness. In 2 N plots, the electron transport flux from QA to QB per cross section and the number of active PSII RCs per cross section were considerably enhanced. It was clearly indicated that the connectivity between photosynthetic PSII and PSI, i.e. electron transport, was far effective.
        12.
        2013.07 서비스 종료(열람 제한)
        In U.S.A. maize breeding, exotic germplasm is considered as high-risk and usually introduced by backcrossing specific traits into elite lines. The U.S.A. maize germplasm base is narrow. Only a few open-pollinated varieties are well represented in current programs. Currently, the barrier in using of exotic germplasm in the U.S.A is less formidable than in the 1980s. The major reason is that U.S.A materials are now used in tropical breeding to accelerate earlier maturity and lodging resistance. These exotic materials, developed with U.S.A germplasm, are being introduced back into the U.S.A.Since1994, the ARS-led Germplasm Enhancement of Maize (GEM) project has sought to help broaden the genetic base of America’s corn crop by promising exotic germplasm and crossing it with domestic lines. New hybrids derived from such crosses have provided corn researchers and the producers. These may include improved or alternative native source of resistance to insect pests such as corn rootworms and diseases like northern leaf blight. GEM’s aim is to provide source of useful genetic maize diversity to help the producers to reduce risks from new or evolving insect and disease threats or changes in the environment or respond to new marketing opportunities and demand. During the 2009 growing season, the Ames (Iowa) and Raleigh (North Carolina) locations managed or coordinated evaluations on 17,200 nursery plots as well as 14,000 yield trial plots in Ames and 12,000 in Raleigh. A new “allelicdiversity” study is devoted to exploring and capturing the genetic variation represented by over 300 exotic corn races. Since 2001, GEM has released 221 new corn lines to cooperators for further development into elite commercial new hybrids. GEM has already identified about 50%-tropical, 50%-temperate families tracing primarily to tropical hybrids that are competitive with commercial checks. In North Carolina State University program, they have examined the potential of tropical inbredand hybrids for U.S.A. breeding by crossing temperate-adapted, 100%-tropical lines to U.S.A hybrids. There should be favorably unique alleles or genomic regions in temperate germplasm that can be helpful in tropical maize improvement as well as utilization of tropical lines in temperate areas.
        13.
        2012.07 서비스 종료(열람 제한)
        In order to clarify the chromosomal location of quantitative trait loci (QTL) associated with the yield and agronomic traits in waxy corn and sweet corn (Zea maysL.), we were conducted identifying of QTLs associated with yield and agronomic traits by employing genetic linkage map of F2:3 population. A total of 14 QTLs each for days to silking (DTS), plant height (PH), ear height (EH), ear height ratio (ER), ear length (L-Ear) and kernel setting length (L-Sear) were detected in the 158 F2 families. The number of QTL per each trait was ranged from 1 to 6, and also phenotypic variance was ranged from 3.55 to 16.86%. For DTS, one QTLs was found to be controlled by genomic regions at locations chromosomes 1 contributing 9.21% of phenotypic variance. While three QTLs for PH, were found to be controlled by 3 genomic regions at locations chromosomes 1 and 2 contributing 6.68, 6.85 and 8.17% of phenotypic variance, respectively. For EH, six QTLs were found to be controlled by 6 genomic regions at locations chromosomes 1, 7, 8 and 10 range from 3.55 to 11.44% of phenotypic variance. The one QTLs for ER was found at locations chromosomes 1 contributing 7.25% of phenotypic variance. For L-Ear, two QTLs were found to be controlled by 2 genomic regions at location chromosome 7 and 10 contributing 7.40 and 11.63% of phenotypic variance, respetively. The one QTLs for L-Sear was found at locations chromosomes 3 contributing 16.86% of phenotypic variance. Among them, three QTLs, such as qEH8 (11.44%), qLEar10 (11.63%), and qLSear3 (16.86%) may be considered as a major QTLs, while the remaining 11 QTLs might be regarded as minor QTLs. This study may provide valuable information for the further identification and characterization of genes responsible for agronomic traits in waxy corn and sweet corn.
        14.
        2010.12 KCI 등재 서비스 종료(열람 제한)
        본 연구는 유전자 조작 옥수수의 유전자 유출을 막기 위한 관리방법 개발의 목적으로 고려대학교 GMO 격리포장에서 2010년에 수행된 화분 비산실험의 결과를 이용하여 Yamamura(2004)의 Gamma model로 모델링하였다. 1. 모델의 결정계수는 0.44로 예측치가 실측치를 잘 설명하였다. 2 옥수수 화분의 최대 비산 방향은 북서쪽으로 나타났다. 3. 최대 비산 방향으로 타가수분율이 0.001까지 낮아지는 거리인 '유전자유출 한계거리(0.001)'는 525 m 그리고 국내법상 비의도적 GMO 혼입허용치인 0.03 까지 낮아지는 거리인 '최소 동일작물 재배 한계거리(0.03)'는 35 m로 나타났다.
        15.
        2007.03 KCI 등재 서비스 종료(열람 제한)
        A new single cross waxy corn (Zea mays L.) hybrid, “Jomichal” with white kernel was developed by the Maize Experiment Station (MES), Gangwon-do Agricultural Research and Extension Services (GARES) in 2005. This hybrid, which has early flowering, short-cul
        16.
        2007.03 KCI 등재 서비스 종료(열람 제한)
        A new single cross waxy corn (Zea mays L.) hybrid, “Mibaek 2” with white kernel was developed by the Maize Experiment Station (MES), Gangwon-do Agricultural Research and Extension Services (GARES) in 2005. This hybrid, which has good eating quality, high
        17.
        2007.03 KCI 등재 서비스 종료(열람 제한)
        A new single cross waxy corn (Zea mays L.) hybrid, “Miheugchal” with black kernel was developed by the Maize Experiment Station (MES), Gangwon-do Agricultural Research and Extension Services (GARES) in 2004. This hybrid, which has good eating quality and
        18.
        2007.03 KCI 등재 서비스 종료(열람 제한)
        A single cross hybrid “Gangilok” is an yellow semi-dent maize (Zea mays L.) developed by the Maize Experiment Station at Gangwon-do Agricultural Research and Extension Services in 2005. “Gangilok” has high yield of dry matter, total digestible nutrients (
        1 2