We produced an activated carbon using sodium-lignosulfonate, in which we investigated how the sodium salt in lignin served as the activating agent during heat treatment. Our process resulted in a product with a high specific surface area of 1324 m2/ g at 800 °C and microporous structure. During the activation process, we observed the consumption of carbon due to the dehydration reaction of NaOH and the reduction of Na2CO3 to metallic Na, which created pores through oxidation/ reduction reactions. The intercalation of metallic Na between the lattices at high temperatures formed additional pores and increased the specific surface area. Our proposed mechanism holds promise for enhancing the control of the microstructure and porosity of activated carbons through the thermal treatment of biomass.
In this study, waste corrugated paper was used as carbon precursor with KOH-NaOH mixture (mole ratio was 51:49 and the melting point is 170 °C) as activator to prepare porous carbon at different reaction temperature and different mass ratio of KOH-NaOH mixture/waste corrugate paper fiber. The micro-morphology, pore structure information and composition of porous carbon were analyzed, and the formation mechanism of pores was investigated. The effect of activator amount and pyrolysis temperature on the morphology and structure of porous carbon were studied. The adsorption capacity of porous carbon was evaluated with the methylene blue as model pollutant. The effect of adsorbent amount, adsorption time and temperature on the adsorption performance of the porous carbon were analyzed. The maximum specific surface area is 1493.30 m2 ·g−1 and the maximum adsorption capacity of methylene blue is 518 mg·g−1. This study provides a new idea for efficient conversion and utilization of waste paper.
The discharge of dye-containing industrial effluents such as methylene blue (MB) in water bodies has resulted in severe aquatic and human life problems. In addition to this factor, there is the accumulation of banana peel wastes, which can generate ecological damage. Thus, this research purpose a different method from the literature using the banana peel waste (BP) to produce activated carbon (ACBP) by NaOH activation followed by pyrolysis at 400 °C to remove methylene blue (MB). The material was characterized by TGA, XRD, SEM, BET, and FTIR. The influence of dye concentration (10, 25, 50, 100, 250, and 500 mg L−1) was investigated. ACBP presented a well-developed pore structure with a predominance of mesopores and macropores. This morphological structure directly influences the MB removal capacity. The highest efficiency for dye removal was in the MB initial concentration of 25 mg L−1, sorbent of 0.03 g, and contact time of 60 min, which were 99.8%. The adsorption isotherms were well defined by Langmuir, Freundlich, and Temkin isotherm models. The Langmuir model represented the best fit of experimental data for ACBP with a maximum adsorption capacity of 232.5 mg g−1. This adsorbent showed a comparatively high performance to some previous works. So, the banana peel waste is an efficient resource for producing activated carbon and the adsorption of methylene blue.
Atmospheric concentrations of CO2, a major cause of global warming, have been rising due to industrial development. Carbon capture and utilization, which has been introduced to cover such disadvantages, makes it possible to capture CO2, recycling byproducts as resources. However, CCU also requires large amounts of energy in order to induce reactions. Among existing CCU technologies, the process for converting CO2 into CaCO3 requires high temperature and high pressure as reaction conditions. This study proposes a method to fixate CaCO3 stably by using relatively less energy than existing methods. Following the experiment, the resulting product CaCO3 was analyzed with FT-IR; FE-SEM image and XRD patterns were also analyzed. The results showed that the CaCO3 crystal product was high-purity calcite.
Three activated carbons (ACs) were prepared using NaOH (N) as an activating agent. Hy-drofluoricacid pre-leached rice husk was used as a precursor. After leaching, the precursor was washed with distilled water, dried, crushed, and then sieved; a size fraction of 0.3-0.5 mm was selected for carbonization in the absence of air at 600°C. The carbonization prod-uct (LC) was mixed with NaOH at ratios of 1:2, 1:3, and 1:4 (wt of LC: wt of NaOH) and the produced ACs after activation at 800°C were designated NLC21, NLC31, and NLC41, respectively. Surface and textural properties were determined using nitrogen adsorption at -196°C, scanning electron microscopy images, thermogravimetric analysis, and Fourier transform infrared spectra . These ACs were used as adsorbents for lead(II) from aqueous solutions. The effects of the textural properties and the chemistry of the carbon surfaces were investigated and the impact of the operation conditions on the capacity for lead(II) sorption was also considered. Modificationof NLC41 with H2O2 and HNO3 gave two other adsorbents, HNLC41 and NNLC41 respectively. These two new samples exhibited the highest removal capacities for lead(II), i.e.117.5 and 128.2 mg/g, respectively. The adsorption data fittedthe Langmuir isotherm and the kinetic adsorption followed pseudo-second order kinet-ics. The thermodynamic parameters have been determined and they indicated a spontaneous endothermic process.
본 실험은 계란의 과잉생산에 따른 여러 가지의 문제점을 해결하고 사육 농가의 소득을 증대하기 위해 계란으로 피단을 제조하는 방법을 실험하였다. NaOH의 농도를 3, 5, 7%로 기준하고 NaCl의 농도를 5,10, 15, 20%로 기준하여 침지액을 제조하여 2일 간격으로 14일간 실험하였다. 침지액의 pH는 NaOH의 농도가 높을수록, 그리고 침지기간이 경과할수록 피단제조용 침지액의 pH는 증가하였고, NaCl의 농도가 높을수록 감소하는 경향이 나타났다. 난황의 pH는 NaOH의 농도가 진할수록 증가하였으나, NaCl의 농도에 따라서는 차이가 나타나지 않았다. NaOH와 NaCl의 농도가 높을수록 난황과 난백 침투속도는 빨라지는 것으로 나타났다. NaOH의 농도가 3%일 때 14일까지도 난백의 수양화가 되지 않았으나, 5%일 때는 11∼12일째에, 7%일 때는 8∼10일째에 각각 수양화가 발생하였다. 수양화가 되었을 때 난백의 pH는 11.8∼12.0으로 조사되었다. NaOH의 농도가 3%일때는 12∼14일 정도, 5%일 때는 10일 정도, 7%일 때는 6∼7일 정도 침지 후 열처리를 하면 피단이 완성되었다. NaOH의 농도가 높을수록 침지기간 및 제조기간은 단축하였으나, 피단 난백의 수양화가 빠르게 진행되는 것이 큰 단점으로 나타났다. 따라서 NaOH가 3∼5%정도가 알맞다고 생각되며, NaCl의 농도는 침지기간에는 무관하나 염도에 영향을 미치므로 5∼10%정도 범위에서 조절하는 것이 적당하고 15∼20%일 경우에는 염도가 높아 기호도가 떨어졌다.
When a new bonding agent using coal ash is utilized as a substitute for cement, it has the advantages of offering a reduction in the generation of carbon dioxide and securing the initial mechanical strength such that the agent has attracted strong interest from recycling and eco-friendly construction industries. This study aims to establish the production conditions of new hardening materials using clean bottom ash and an alkali activation process to evaluate the characteristics of newly manufactured hardening materials. The alkali activator for the compression process uses a NaOH solution. This study concentrated on strength development according to the concentration of the NaOH solution, the curing temperature, and the curing time. The highest compressive strength of a compressed body appeared at 61.24MPa after curing at 60˚C for 28 days. This result indicates that a higher curing temperature is required to obtain a higher strength body. Also, the degree of geopolymerization was examined using a scanning electron microscope, revealing a micro-structure consisting of a glass-like matrix and crystalized grains. The microstructures generated from the activation reaction of sodium hydroxide were widely distributed in terms of the factors that exercise an effect on the compressive strength of the geopolymer hardening bodies. The Si/Al ratio of the geopolymer having the maximum strength was about 2.41.
엽연의 모양이 다른 4종류의 잎을 식물재료로 사용 하고, 망사잎 제작을 위한 엽육제거시 sodium hydroxide( NaOH)의 농도와 처리시간의 최적 조건을 찾고자 하였다. 중국단풍(장상열)은 NaOH 60% 용액에서 50 분간, 호랑가시나무(예거치)는 NaOH 20% 용액에서 50분간, 신갈나무(천열)는 NaOH 20-60% 용액에서 70분간, 대왕참나무(전열)는 NaOH 20-40% 용액에서 70분간 열탕 처리하다 엽육제거율도 높고 관상가치가 높은 망사잎을 만들 수 있었다.
Porous poly(e-caprolactone) (PCL) scaffolds were fabricated by salt leaching method. The PCL scaffolds were treated with aqueous NaOH for 0h, 2h, 4h, 8h, and 12h at 40˚C. The NaOH-treated PCL scaffolds were dipped in CaCl2 and K2HPO4·3H2O solution alternately three times to induce apatite nuclei onto the surface of the scaffolds. The NaOH-treated PCL scaffolds were immersed into SBF solution for 1day to grow the apatite. The apatite formation were investigated as a fuction of NaOH treatment time. The hydrophilicty and surface area of the PCL scaffolds were increased with NaOH-treatment time. The NaOH-treated PCL scaffolds were successfully formed a dense and uniform bone-like apatite layer after immersion for 1 day in SBF solution.
This syudy was conducted to increase the utility of forage rye which are suitable to be cultivated at high altitude Taekwllyong area. For that purpose two cultivars of rye (winter-more, kool-glazer) were cultivated for 3years using a randomized block desi
This study was conducted to examine of rice straw after chemical treatments and ensiling on its feeding value, in situ studies using a rumen fistulated Korean cow and nylon bag technique. NaOH treatment greatly improved the degradation the Dry matter and
범지구적으로 다양한 문제를 야기하는 지구온난화 현상은 해결해야하는 필수 과제 중 하나로 여겨져 왔다. 이 중에서 이산화탄소는 낮은 지구온난화 지수에도 불구하고 가장 많은 양으로 인해 지구온난화 현상에 대해 가장 큰 책임을 가지고 있다. 이산화탄소 저감을 위한 기술로 금속 이온과 이산화탄소의 결합을 통한 무기탄산화 기술이 최근 떠오르고 있다. 무기탄산화 기술의 가장 큰 가능성 중 하나는 다양한 금속이온을 가지고 있는 폐기물을 원료로 이용할 수 있다는 점이다. 본 연구에서는 이러한 폐기물 중 다량의 Ca를 가지고 있는 것으로 알려진 비산재를 이용하여 무기탄산화, 그 중에서도 수용액 내에 이산화탄소를 주입하여 반응시키는 직접수성 탄산화를 통한 탄산칼슘 생성에 대해 다루었다. 다량의 불순물을 포함하고 있는 비산재를 보다 순수한 형태로 이용하기 위하여 고온 (70℃)의 물로 세정하여 이용하였다. 총 500 g의 흡수제 중 세정한 비산재가 10 wt% (50g) 포함되었고, 5 wt% (25 g)의 NaOH 첨가 유무에 따른 CO2 저감량의 차이를 CO2 로딩 분석을 통해 비교하였다. 생성물에 대하여 XRD 그리고 TGA 분석을 통해 구성성분 및 순도 분석을 진행하였다.
This is an experimental study on manufacturing of non-cement matrix. Materials like cement and blowing agent in foamed concrete is replaced by by-products from blast furnace slag and paper ash. Sample Plain with density showed lowest. The compressive strength test result, showed a similar trend with density. And it showed that compressive strength of the 4:6 was highest.
This paper presents the experimental results for durability of an NaOH designed with blast furnace slag through the test method of chloride ion resistance and freezing-thawing resistance, Carbonation. In order to compare with NaOH, normal concrete was also tested. Test results showed that NaOH exhibited lower durability performance than ordinary mortar.
The activated carbon was prepared from waste citrus peels using NaOH. With the increase of NaOH ratio, iodine adsorptivity and specific surface area of the activated carbon prepared were increased, but activation yield was decreased. The optimal condition of activation was at 300% NaOH and 700℃ for 1.5 hr. For the activated carbon produced under optimal condition, iodine adsorptivity was 1,006 mg/g, specific surface area was 1,356 m2/g, and average pore diameter was 20~25Å. From the adsorption experiment for benzene vapor in fixed bed reactor, it was found that the adsorption capacity of activated carbon prepared from waste citrus peel was higher than that of activated carbon purchased from Calgon company. This result implied that the activated carbon prepared from waste citrus peel could be used for gas phase adsorption.