한국도로공사에서는 전 세계적인 기후위기 대응에 동참하고, 탄소중립기본법, 탄소중립 녹색성장 기본계획 등 정부의 탄소중립 정책 에 부응하기 위하여 “생애전주기 친환경 대응체계”를 구축하였으며, 이에 도로포장의 생애주기 동안 발생되는 탄소배출량을 산출하기 위한 생애전주기평가(Life Cycle Assessment, LCA)의 필요성이 점차 대두되고 있다. 한국도로공사에서는 매년 고속도로 포장상태 모니터링 데이터를 활용하여 공용성을 예측함으로써 포장 유지관리 전략에 활용하고 있으나 이는 거시적인 측면에서의 포장 공용성 모델로 고속도로 포장의 형식, 재료, 공법 등을 고려한 미시적 측면에서의 공용성 모델 개발 및 개발 절차 정립이 필요할 것으로 판단된다. 따라서, 본 연구에서는 고속도로 장기공용성 관측구간(Long Term Pavement Performance, LTPP) 데이터베이스(DB)를 활용하여 고속도로 JCP 공용성 모델을 개발하기 위한 기초연구를 수행하였다. 본 연구에서는 포장상태지수(Highway Pavement Condition Index, HPCI), 표면손상(Surface Distress, SD), 종단평탄성(International Roughness Index, IRI)를 종속변수로, 각 구간별 누적 교통 및 기후인자를 독립변수로 설정하여 다양한 교통 및 환경 영향인자에 따 른 고속도로 JCP 공용성을 예측하기 위하여 기술통계분석, 상관분석, 분산분석, 다중회귀분석을 수행하였다. 고속도로 JCP 공용성에 대한 다중회귀분석 결과, HPCI 모델의 수정된 R2이 0.614.로 SD 모델(0.413)이나 IRI 모델(0.317)에 비하여 높은 설명력을 보이는 것으로 나타났으며, 개별 모델의 회귀식은 통계적으로 유의한 것으로 나타났다.
Dynamic responses of nuclear power plant structure subjected to earthquake loads should be carefully investigated for safety. Because nuclear power plant structure are usually constructed by material of reinforced concrete, the aging deterioration of R.C. have no small effect on structural behavior of nuclear power plant structure. Therefore, aging deterioration of R.C. nuclear power plant structure should be considered for exact prediction of seismic responses of the structure. In this study, a machine learning model for seismic response prediction of nuclear power plant structure was developed by considering aging deterioration. The OPR-1000 was selected as an example structure for numerical simulation. The OPR-1000 was originally designated as the Korean Standard Nuclear Power Plant (KSNP), and was re-designated as the OPR-1000 in 2005 for foreign sales. 500 artificial ground motions were generated based on site characteristics of Korea. Elastic modulus, damping ratio, poisson’s ratio and density were selected to consider material property variation due to aging deterioration. Six machine learning algorithms such as, Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Artificial Neural Networks (ANN), eXtreme Gradient Boosting (XGBoost), were used t o construct seispic response prediction model. 13 intensity measures and 4 material properties were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks present good prediction performance considering aging deterioration.
이 연구는 중국의 성공적인 실경 공연 작품의 비즈니스 모델을 분석함 으로써 향후 한·중 양국의 실경공연 발전을 위한 전략을 제시하고자 하 였다. 이를 위해 Osterwalder & Pigneur(2010)에 의해 고안된 비즈니 스 모델 캔버스를 활용해 최근 중국 현지에서 가장 성공적이라고 평가받 는 <판타지아·하남>을 분석하였다. 분석 결과, 일반적인 실경공연과 달리 <판타지아·하남>의 관객은 지역문화에 관심이 있는 젊은 사람들이 주를 이루었으며, 지역문화를 활용해 공연을 제작하고, 입소문 마케팅 및 홍보 를 적극적으로 전개하고 있었다. 또한 수익원으로는 호텔, 문화상품 판매 등 다양한 수익원을 발굴하는 데 주안점을 두고 있었다. 이와 같은 연구 결과가 시사하는 바는 첫째 공연 내용은 전략적으로 그 지역 특유의 문 화에 집중해야 하며, 둘째 수익원의 다각화가 필요하고, 셋째, 온·오프라 인의 홍보를 강화해야 하며, 마지막으로 그 지역의 현지인의 배우들을 육성하는 노력이 병행돼야 한다. 본 연구가 한국 및 중국 실경공연 시장 의 성장에 기여할 수 있기를 기대한다.
본 연구에서는 대학 교수학습센터에서 제공하는 학습지원 프로그램의 성과를 종합적으로 평가하기 위한 BSC(Balanced Score Card) 기반의 성과평가 모형을 개발하고 적용하는 데 있다. 문헌 연구를 통해 성과평 가의 이론적 배경을 조사하고, BSC 모형을 교육 분야에 맞게 수정하여 학습지원 프로그램에 적용 가능한 평가 체계를 설계하였다. 재무, 수요 자, 운영, 프로그램의 네 가지 관점에서 성과평가 지표를 설정하고, 이를 기반으로 대학의 다양한 학습지원 프로그램의 성과를 분석하였다. 분석 결과, 특정 프로그램들이 높은 성과를 보임을 확인하였으며, 동시에 개선 이 필요한 영역을 확인하였다. 개발된 BSC 기반 성과평가 모형은 대학 학습지원 프로그램의 다각도에서의 성과를 평가하는 데 유용하였으며, 프로그램의 강점과 개선점을 명확하게 확인할 수 있었다. 이 연구를 통 하여 대학 교수학습센터가 학습지원 프로그램의 질을 개선하고, 대학 교 육의 질적 향상에 기여하길 기대한다.
수산자원의 지속 가능한 관리와 증대는 전 세계적으로 중요한 이슈로 부상하고 있으며, 본 연구는 이에 대응하는 한국수산자 원공단의 수산자원 현존량 추정을 위한 딥러닝 기반 수산자원 증대사업 효과조사 기법 개발을 위해 구성 기술 중 하나인 어류 탐지 및 분류 모델 구축과 성능 비교를 수행하였다. 다양한 크기의 YOLOv8-Seg 모델에 어류 이미지 데이터셋을 학습한 후 각 성능평가 지표를 비 교 분석하여 적용 가능한 최적의 모델을 선정하고자 하였다. 모델 구축에 사용된 자료는 총 12종의 어류로 이루어진 36,749장의 이미지와 라벨 파일로 이루어지며, 학습에는 증강을 적용하여 데이터의 다양성을 증가시켰다. 동일한 환경 및 조건에서 총 다섯 개의 YOLOv8-Seg 모델을 학습 및 검증한 결과 중간 크기의 YOLOv8m-Seg 모델이 가장 짧은 13시간 12분의 학습 시간과 0.933, 추론 속도 9.6 ms로 높은 학습 효율성과 우수한 탐지 및 분류 성능을 보였으며, 각 지표 간의 균형을 고려할 때 실시간 처리 요구사항을 충족하는 가장 효율 적인 모델로 평가되었다. 이와 같은 실시간 어류 탐지 및 분류 모델을 활용하여 효율적인 수산자원 증대사업의 효과조사가 가능할 것으 로 보이며, 지속적인 성능 개선 및 추가적인 연구가 필요할 것으로 사료된다.
본 연구는 필라테스 리더-멤버 간의 교환관계(TMX)가 직무성과에 미치는 영향관계를 밝히고 자 2023년 4월 1일~7월 12일까지 커플자료 82팀(164명 : 리더 82명, 멤버 82명)을 편의표본 추출하여 다 음과 같은 결과를 도출하였다. 첫째, 자기효과는 리더 교환관계가 높을수록 리더 직무성과도 높아지는 것 으로 나타났고, 상대방 효과는 멤버 교환관계가 높을수록 리더 직무성과도 높아지는 것으로 나타났다. 둘 째, 상대방효과는 리더 교환관계가 높을수록 멤버 직무성과도 높아지는 것으로 나타났으며, 자기효과는 멤 버 교환관계가 높을수록 멤버 직무성과도 높아지는 것으로 나타났다. 따라서 상호적 관계가 의존적 관계로 이어진다는 점에서 교환관계(TMX)에 대한 시스템적 요구가 반영된 결과라 볼 수 있다.
최근 지구 온난화의 영향으로 태풍의 파괴력이 증가함에 따라 부유식 해상풍력발전기의 막대한 유실과 붕괴에 대한 우려가 깊어지고 있다. 부유식 해상풍력발전기의 안전한 운영을 위해 새로운 형태의 탈착형 계류 시스템 개발이 요구되고 있다. 본 연구에서 고 려한 새로운 반잠수식 계류 풀리는 기존의 탈착형 계류 장치에 비해 계류 라인으로 부유식 해상풍력 터빈을 보다 쉽게 탈부착할 수 있도 록 고안되었다. 8MW급 부유식 해상풍력발전기에 적용 가능한 반잠수식 계류 풀리의 초기 설계에 대한 구조적 안전성을 검토하기 위해 3D 프린터를 이용하여 축소구조모형을 제작하고, 이 모형에 대한 구조시험을 수행하였다. 축소 모형의 구조시험을 위해 3D 프린팅에 사 용된 ABS 소재의 인장 시편을 제작하고 인장시험을 수행하여 소재의 물성을 평가하였다. 인장시험에서 얻은 재료 특성과 축소모형 구조 시험과 동일한 하중 및 경계 조건을 적용하여 반잠수식 계류 풀리의 유한요소해석을 수행하였다. 유한요소해석을 통해 반잠수식 계류 풀 리의 구조적 취약 부분을 검토하였다. 반잠수식 계류 풀리의 주요 하중조건을 고려하여 구조모형시험을 수행하였으며, 재료의 최대인장 응력 이상이 발생하는 위치에 대해 유한요소해석과 시험 결과를 비교하였다. 유한요소해석과 모형시험의 결과로부터 작동조건에서는 Body와 Wheel의 연결부 구조가 취약한 것으로 파악되었고, 계류조건에서는 Body와 Chain stopper의 연결부 구조가 취약한 것으로 검토되었 다. 축소모형 구조시험에서 나타난 SMP의 구조 취약부는 구조해석의 결과와 일치하는 것으로 나타났다. 연구 결과를 통해 반잠수식 계류 풀리의 초기 설계에 대한 구조적 안전성을 실험적으로 검증할 수 있었다. 또한, 본 연구 결과는 상세설계 단계에서 반잠수식 계류 풀리의 구조 강도를 향상시키는데 유용하게 활용될 수 있을 것으로 판단된다.
프리캐스트 코핑의 중공부 주철근 단절로 인한 단점을 보완하고, 거치대 삽입 없이 주철근을 거치대로 활용할 수 있 도록 철근-콘크리트 접촉부의 응력집중을 완화할 수 있는 하중분산세트의 성능을 검토하였다. 유한요소해석 및 축소모형실험을 통해 검토한 결과 하중분산세트는 철근-콘크리트 접촉부의 응력집중을 효과적으로 완화시켜 거치 시 콘크리트 파손을 방지할 수 있을 것으로 판단된다.
우리나라 열병합 발전소에서 운영되고 있는 최신 증기터빈의 출력과 효율 향상을 위한 첫 번째 기술적인 진보는 고온, 고압의 증기를 사용할 수 있는 소재 개발의 진척이라고 할 수 있다. 소재의 발전과 더불어 증기터빈의 내부효율 향상을 위한 설계적 노력의 결실 로 높은 효율의 증기터빈이 제작되었다. 오랜 기간 운전 중인 증기터빈의 내부효율은 기계적 수명의 한계로 점차 손실이 발생하고 효율 과 출력이 떨어지게 된다. 이러한 이유로 본 연구에서는 상용프로그램을 이용하여 열병합 발전소용 고압(HP)-중압(IP) 증기터빈의 증기유 로 성능해석을 수행할 수 있는 모델을 개발하고 성능계산 방법을 제시하고자 한다. 증기터빈의 복잡한 성능계산방식으로 인해 증기터빈 실무자들에게 실질적으로 유용한 참고문헌이 될 수 있도록 주요 변수들을 제시하였다. 또한 증기터빈 성능계산에 필요한 열정산도 분석 과 증기터빈 성능계산 결과의 적합성을 성능시험 결과와 비교 확인하였다.
The Korean Nuclear Safety and Security Commission has established a general guideline for the disposal of high-level waste, which requires that radiological effects from a disposal facility should not exceed the regulatory safety indicator, a radiological risk. The post-closure safety assessment of the disposal facility aims to evaluate the radiological dose against a representative person, taking into account nuclide transport and exposure pathways and their corresponding probabilities. The biosphere is a critical component of radiation protection in a disposal system, and the biosphere model is concerned with nuclide transport through the surface medium and the doses to human beings due to the contaminated surface environment. In past studies by the Korea Atomic Energy Research Institute (KAERI), the biosphere model was constructed using a representative illustration of surface topographies and groundwater conditions, assuming that the representative surface environment would not change in the future. Each topography was conceptualized as a single compartment, and distributed surface contamination over the geometrical domain was abstracted into 0D. As a result, the existing biosphere model had limitations, such as a lack of quantitative descriptions of various transport and exposure pathways, and an inability to consider the evolution of the surface environment over time. These limitations hinder the accurate evaluation of radiological dose in the safety assessment. To overcome these limitations, recent developments in biosphere modeling have incorporated the nuclide transport process over a 2D or 3D domain, integrating the time-dependent evolution of the surface environment. In this study, we reviewed the methodology for biosphere modeling to assess the radiological dose given by distributed surface contamination over a 2D domain. Based on this review, we discussed the model requirements for a numerical module for biosphere dose assessment that will be implemented in the APro platform, a performance assessment tool being developed by the KAERI. Finally, we proposed a conceptual model for the numerical module of dose assessment.
본 연구에서는 2 016년부터 2 02 0년까지 내륙 관측소 중 안개 최다발 지역인 안동을 대상으로 XGBoost-DART 머신러닝 알고리즘을 이용하여 1 시간 후 안개 유무를 예측하였다. 기상자료, 농업관측자료, 추가 파생자료와 각 자료 를 오버 샘플링한 확장자료, 총 6개의 데이터 세트를 사용하였다. 목측으로 획득한 기상현상번호와 시정계 관측으로 측 정된 시정거리 자료를 각각 안개 유[1]무[0]로 이진 범주화하였다. 총 12개의 머신러닝 모델링 실험을 설계하였고, 안개 가 사회와 지역사회에 미치는 유해성을 고려하여 모델의 성능은 재현율과 AUC-ROC를 중심으로 평가하였다. 전체적으 로, 오버샘플링한 기상자료와 기상현상번호 기반의 예측 목표를 조합한 실험이 최고 성능을 보였다. 이 연구 결과는 머 신러닝 알고리즘을 활용한 안개 예측에 있어서, 목측으로 획득한 기상현상번호의 중요성을 암시한다.
고성능 콘크리트(HPC) 압축강도는 추가적인 시멘트질 재료의 사용으로 인해 예측하기 어렵고, 개선된 예측 모델의 개발이 필수적 이다. 따라서, 본 연구의 목적은 배깅과 스태킹을 결합한 앙상블 기법을 사용하여 HPC 압축강도 예측 모델을 개발하는 것이다. 이 논 문의 핵심적 기여는 기존 앙상블 기법인 배깅과 스태킹을 통합하여 새로운 앙상블 기법을 제시하고, 단일 기계학습 모델의 문제점을 해결하여 모델 예측 성능을 높이고자 한다. 단일 기계학습법으로 비선형 회귀분석, 서포트 벡터 머신, 인공신경망, 가우시안 프로세스 회귀를 사용하고, 앙상블 기법으로 배깅, 스태킹을 이용하였다. 결과적으로 본 연구에서 제안된 모델이 단일 기계학습 모델, 배깅 및 스태킹 모델보다 높은 정확도를 보였다. 이는 대표적인 4가지 성능 지표 비교를 통해 확인하였고, 제안된 방법의 유효성을 검증하였다.
PURPOSES : In this study, surface distress (SD), rutting depth (RD), and international roughness index (IRI) prediction models are developed based on the zones of Incheon and road classes using regression analysis. Regression analysis is conducted based on a correlation analysis between the pavement performance and influencing factors.
METHODS : First, Incheon was categorized by zone such as industrial, port, and residential areas, and the roads were categorized into major and sub-major roads. A weather station triangle network for Incheon was developed using the Delaunay triangulation based on the position of the weather station to match the road sections in Incheon and environmental factors. The influencing factors of the road sections were matched Based on the developed triangular network. Meanwhile, based on the matched influencing factors, a model of the current performance of the road pavement in Incheon was developed by performing multiple regression analysis. Sensitivity analysis was conducted using the developed model to determine the influencing factor that affected each performance factor the most significantly.
RESULTS : For the SD model, frost days, daily temperature range, rainy days, tropical nights, and minimum temperatures are used as independent variables. Meanwhile, the truck ratio, freeze–thaw days, precipitation days, annual temperature range, and average temperatures are used for the RD model. For the IRI model, the maximum temperature, freeze–thaw days, average temperature, annual precipitation, and wet days are used. Results from the sensitivity analysis show that frost days for the SD model, precipitation days and freeze–thaw days for the RD model, and wet days for the IRI model impose the most significant effects.
CONCLUSIONS : We developed a road pavement performance prediction model using multiple regression analysis based on zones in Incheon and road classes. The developed model allows the influencing factors and circumstances to be predicted, thus facilitating road management.
The prediction of algal bloom is an important field of study in algal bloom management, and chlorophyll-a concentration(Chl-a) is commonly used to represent the status of algal bloom. In, recent years advanced machine learning algorithms are increasingly used for the prediction of algal bloom. In this study, XGBoost(XGB), an ensemble machine learning algorithm, was used to develop a model to predict Chl-a in a reservoir. The daily observation of water quality data and climate data was used for the training and testing of the model. In the first step of the study, the input variables were clustered into two groups(low and high value groups) based on the observed value of water temperature(TEMP), total organic carbon concentration(TOC), total nitrogen concentration(TN) and total phosphorus concentration(TP). For each of the four water quality items, two XGB models were developed using only the data in each clustered group(Model 1). The results were compared to the prediction of an XGB model developed by using the entire data before clustering(Model 2). The model performance was evaluated using three indices including root mean squared error-observation standard deviation ratio(RSR). The model performance was improved using Model 1 for TEMP, TN, TP as the RSR of each model was 0.503, 0.477 and 0.493, respectively, while the RSR of Model 2 was 0.521. On the other hand, Model 2 shows better performance than Model 1 for TOC, where the RSR was 0.532. Explainable artificial intelligence(XAI) is an ongoing field of research in machine learning study. Shapley value analysis, a novel XAI algorithm, was also used for the quantitative interpretation of the XGB model performance developed in this study.
국내 주요 사회기반시설의 70% 이상이 철근콘크리트 구조물로 구성되어 있다. 최근 다양한 사회적ㆍ환경적 변화로 인한 내하력 저하 및 노후화 진행이 발생됨에 따라 섬유강화 복합소재(FRP)를 활용한 유지보수 수요 및 비용이 급격히 증가되 고 있다. 이에 따라 보다 경제적이고 효율적으로 FRP 보강재를 활용함에 있어서 성능을 예측할 수 있는 방법이 요구된다. 본 연구에서는 CFRPㆍBFRP 복합재료를 실험 대상으로 선정하고 성능을 결정하는 주요 인자인 섬유/수지 함침률을 54.3%, 43.9%, 39% 3가지로 분류하여 성능을 평가하고 이를 활용하여 FRP의 성능을 예측할 수 있는 모델식을 개발하고자 하였다. 매개변수에 따른 성능평가 결과, 두 섬유 모두 함침률이 낮아질수록 재료성능 또한 감소되는 것이 확인되었으며, 특히 BFRP의 경우 39%의 함침률에서 감소폭이 CFRP 대비 더 큰 것으로 나타났다. 실험 결과와 기존의 예측 모델식과의 성능 비교를 통해 약 15%의 오 차가 나타나는 것을 확인하였으며, 이에 따른 보정계수를 산정하여 예측 모델식을 재정립하였다.