This study aims to develop a comprehensive predictive model for Digital Quality Management (DQM) and to analyze the impact of various quality activities on different levels of DQM. By employing the Classification And Regression Tree (CART) methodology, we are able to present predictive scenarios that elucidate how varying quantitative levels of quality activities influence the five major categories of DQM. The findings reveal that the operation level of quality circles and the promotion level of suggestion systems are pivotal in enhancing DQM levels. Furthermore, the study emphasizes that an effective reward system is crucial to maximizing the effectiveness of these quality activities. Through a quantitative approach, this study demonstrates that for ventures and small-medium enterprises, expanding suggestion systems and implementing robust reward mechanisms can significantly improve DQM levels, particularly when the operation of quality circles is challenging. The research provides valuable insights, indicating that even in the absence of fully operational quality circles, other mechanisms can still drive substantial improvements in DQM. These results are particularly relevant in the context of digital transformation, offering practical guidelines for enterprises to establish and refine their quality management strategies. By focusing on suggestion systems and rewards, businesses can effectively navigate the complexities of digital transformation and achieve higher levels of quality management.
This study explores the use of a Deep Autoencoder model to predict depression among plant and machine operators, utilizing data from the Korean National Health and Nutrition Examination Survey (KNHANES, n=3,852). The Deep Autoencoder model outperformed the Logistic Regression, Naive Bayes, XGBoost, and LightGBM models, achieving an accuracy of 86.5%. Key factors influencing depression included work stress, exposure to hazardous substances, and ergonomic conditions. The findings highlight the potential of the Deep Autoencoder model as a robust tool for early identification and intervention in workplace mental health.
Recently, due to the expansion of the logistics industry, demand for logistics automation equipment is increasing. The modern logistics industry is a high-tech industry that combines various technologies. In general, as various technologies are grafted, the complexity of the system increases, and the occurrence rate of defects and failures also increases. As such, it is time for a predictive maintenance model specialized for logistics automation equipment. In this paper, in order to secure the operational safety and reliability of the parcel loading system, a predictive maintenance platform was implemented based on the Naive Bayes-LSTM(Long Short Term Memory) model. The predictive maintenance platform presented in this paper works by collecting data and receiving data based on a RabbitMQ, loading data in an InMemory method using a Redis, and managing snapshot DB in real time. Also, in this paper, as a verification of the Naive Bayes-LSTM predictive maintenance platform, the function of measuring the time for data collection/storage/processing and determining outliers/normal values was confirmed. The predictive maintenance platform can contribute to securing reliability and safety by identifying potential failures and defects that may occur in the operation of the parcel loading system in the future.
In this study, we developed Rapid Enrichment Broth for Vibrio parahaemolyticus (REB-V), a broth capable enriching V. parahaemolyticus from 100 CFU/mL to 106 CFU/mL within 6 hours, which greatly facilitates the rapid detection of V. parahaemolyticus. Using a modified Gompertz model and response surface methodology, we optimized supplement sources to rapidly enrich V. parahaemolyticus. The addition of 0.003 g/10 mL of D-(+)- mannose, 0.002 g/10 mL of L-valine, and 0.002 g/10 mL of magnesium sulfate to 2% (w/v) NaCl BPW was the most effective combination of V. parahaemolyticus enrichment. Optimal V. parahaemolyticus culture conditions using REB-V were at pH 7.84 and 37oC. To confirm REB-V culture efficiency compared to 2% (w/v) NaCl BPW, we assessed the amount of enrichment achieved in 7 hours in each medium and extracted DNA samples from each culture every hour. Real-time PCR was performed using the extracted DNA to verify the applicability of this REB-V culture method to molecular diagnosis. V. parahaemolyticus was enriched to 5.452±0.151 Log CFU/mL in 2% (w/v) NaCl BPW in 7 hours, while in REB-V, it reached 7.831±0.323 Log CFU/mL. This confirmed that REB-V enriched V. parahaemolyticus to more than 106 CFU/mL within 6 hours. The enrichment rate of REB-V was faster than that of 2% (w/v) NaCl BPW, and the amount of enrichment within the same time was greater than that of 2% (w/v) NaCl BPW, indicating that REB-V exhibits excellent enrichment efficiency.
Ball stud parts are manufactured by a cold forging process, and fastening with other parts is secured through a head part cutting process. In order to improve process quality, stabilization of the forging quality of the head is given priority. To this end, in this study, a predictive model was developed for the purpose of improving forging quality. The prediction accuracy of the model based on 450 data sets acquired from the manufacturing site was low. As a result of gradually multiplying the data set based on FE simulation, it was expected that it would be possible to develop a predictive model with an accuracy of about 95%. It is essential to build automated labeling of forging load and dimensional data at manufacturing sites, and to apply a refinement algorithm for filtering data sets. Finally, in order to optimize the ball stud manufacturing process, it is necessary to develop a quality prediction model linked to the forging and cutting processes.
The amount of temporarily stored spent nuclear fuel in South Korea will be reaching saturation in a near future. Therefore, it is an urgent issue to construct a spent nuclear fuel storage system. In order to construct the storage system, some coastal environmental characteristics such as temperature, pH, and chemical composition of sea water in South Korea have to be evaluated and predicted because they can affect in deterioration of the storage system. However, in South Korea, the coastal environmental characteristics of area where the storage system is likely to be built are not well established until now. In this study, a time-series deep-learning algorithm is developed using the Long-Short Term Memory (LSTM) algorithm to predict and evaluate the coastal environmental characteristics based on the wellestablished data from Korea Meteorological Administration (KMA) and Ministry of Oceans and Fisheries (MOF). As a result, by developing the predictive model to evaluate the coastal environmental characteristics, we intend to apply it for site evaluation to construct the spent nuclear fuel storage system or many other applications related to the nuclear as well.
다양한 산업에서 강조되고 있는 정비의 중요성은 각 분야에 다양한 정비전략을 적용하도록 만들었다. 해양산업 역시 그에 따른 정비전략의 변화가 있었으나 타 산업 대비 그 속도가 느려 실제 적용이 되지 않은 채 과거 시행되고 있던 방식을 유지하는 경우가 많다. 특히 선박은 기존에 행해왔던 방식의 정비전략을 사용하고 있는 편이며 해상의 조건에서 선박은 새로운 정비전략의 개발을 필요로 하고있다. 이에 선박예지정비모델은 기기의 정비가 필요한 시점을 예지하여 조치할 수 있는 정비전략으로서 선박이 항해 중에 처할 수 있는 정비 관련 위험요소들을 줄여 주는 모델이다. 본 연구는 선박예지정비모델의 개발을 위한 연구 중의 하나로서, LNG선박 입거사양서의 텍스트 데이터 분석을 통한 결과를 원문의 내용을 바탕으로 해석해보았다. 공통된 정비항목 조합을 도출하여 선박 내 다른 기기들 사이에 작용하고 있는 상호연관성을 발견하고 이를 앞으로 개발될 선박예지정비모델에 적용하고자 한다.
해양 운송 산업은 특성상 항공 및 철도 등의 다른 운송 산업보다 비교적 늦게 신기술이 적용되는 산업이다. 현재 대부분의 선박은 기계장치 및 시스템에 문제가 발생하거나 운용 시간 기반으로 정비를 하는 사후 정비(Corrective Maintenance, CM)와 예방 정비 (Preventive Maintenance, PM)에 속하는 시간 기반 정비(TBM, Time Based Maintenance)가 적용되고 있다. 그러나 높은 유지보수 비용이 요구되고, 육상의 즉각적인 지원이 어려우며, 선박이 멈추면 즉시 위험에 노출되는 해양 환경에서 운영되는 선박에서 과도한 단순 정비로 인한 인력과 비용 낭비, 예측되지 못한 고장 및 결함으로 유발되는 사고 등으로 인해 운용 효율화 측면에서 기존 정비법에 대한 한계점이 문제시 되고 있다. 예지 정비(Predictive Maintenance, PdM)는 진보된 기술로 기계의 상태 및 성능을 모니터링하여 고장시기를 예측하여 정비하는 방법으로 핵심 기계장치가 항상 최상의 작동 상태를 효율적으로 유지할 수 있도록 한다. 본 논문은 해양 환경에서 PdM의 적용성에 중점을 둔 해양 예지 정비(MPdM, Maritime Predictive Maintenance)에 대해 고안하였으며, 제시된 MPdM은 지리적 고립과 극한 해양 상황 등 해양 운송 산업의 특수한 환경을 고려하여 설계되었다. 본 논문은 선진 미래 해양 운송을 가능하게 하는 MPdM이라는 개념과 그 필요성을 제안한다.
To develop a empirical model for predicting the spring flight period of overwintering Ips acuminatus adult, their density were monitored in Korean pine (Pinus koraiensis) forests at Chuncheon in 2015. The monitoring data of the beetles and temperature in the forests were used to develop the empirical predictive model based on degree-day model, and it was validated using the data from Korean pine forest at Wonju in 2018. The lower threshold temperature for flight (LTF) and a thermal requirement for the onset of flight activity of the beetles in spring were estimated. As the result, the LTF was estimated as 1.3 ℃ and 269.96 DD was required for the spring flight. The median flight date estimated by the empirical model was one day earlier than the observed flight date. Therefore, the model is suitable for predicting the spring flight of overwintering I. acuminatus.
The model predictive controller performance of the mobile robot is set to an arbitrary value because it is difficult to select an accurate value with respect to the controller parameter. The general model predictive control uses a quadratic cost function to minimize the difference between the reference tracking error and the predicted trajectory error of the actual robot. In this study, we construct a predictive controller by transforming it into a quadratic programming problem considering velocity and acceleration constraints. The control parameters of the predictive controller, which determines the control performance of the mobile robot, are used a simple weighting matrix Q, R without the reference model matrix Ar by applying a quadratic cost function from which the reference tracking error vector is removed. Therefore, we designed the predictive controller 1 and 2 of the mobile robot considering the constraints, and optimized the controller parameters of the predictive controller using a genetic algorithm with excellent optimization capability.
PURPOSES : A geo-grid pavement, e.g., a stress-absorbing membrane interlayer (SAMI), can be applied to an asphalt-overlay method on the existing surface-pavement layer for pavement maintenance related to reflection cracking. Reflection cracking can occur when a crack in the existing surface layer influences the overlay pavement. It can reduce the pavement life cycle and adversely affect traffic safety. Moreover, a failed overlay can reduce the economic value. In this regard, the objective of this study is to evaluate the bonding properties between the rigid pavement and a SAMI by using the direct shear test and the pull-off test. The predicted fractural energy functions with the shear stress were determined from a numerical analysis of the moving average method and the polynomial regression method.
METHODS : In this research, the shear and pull-off tests were performed to evaluate the properties of mixtures constructed using no interlayer, a tack-coat, and SAMI with fabric and without fabric. The lower mixture parts (describing the existing pavement) were mixed using the 25-40-8 joint cement-concrete standard. The overlay layer was constructed especially using polymer-modified stone mastic asphalt (SMA) pavement. It was composed of an SMA aggregate gradation and applied as the modified agent. The sixth polynomial regression equation and the general moving average method were utilized to estimate the interlayer shear strength. These numerical analysis methods were also used to determine the predictive models for estimating the fracture energy.
RESULTS: From the direct shear test and the pull-off test results, the mixture bonded using the tack-coat (applied as the interlayer between the overlay layer and the jointed cement concrete) had the strongest shear resistance and bonding strength. In contrast, the SAMI pavement without fiber has a strong need for fractural energy at failure.
CONCLUSIONS : The effects of site-reflection cracking can be determined using the same tests on cored specimens. Further, an empiricalmechanical pavement-design analysis using the finite-element method (FEM) must be done to understand the appropriate SAMI application. In this regard, the FEM application analysis and bonding property tests using cored specimens from public roads will be conducted in further research.
본 연구에서는 축산식품인 편육을 대상으로 황색포도상 구균의 성장예측모델을 개발하였다. 편육에서 황색포도상 구균의 성장패턴은 4, 10, 20, 37oC의 보관온도에서 측정 되었으며, 황색포도상구균은 각각의 저장 온도에서 모두 증가하는 것으로 나타났다. 편육에 오염된 황색포도상구 균의 생육결과를 토대로 Baranyi model을 이용하여 유도 기(LPD)와 최대성장률(μmax)을 산출한 결과, 유도기는 4, 10, 20, 37oC에서 212.81, 79.67, 3.12, 2.21 h으로 온도에 반비례한 것으로 나타났고 최대성장률은 같은 보관온도에 서 0.004, 0.009, 0.130, 0.568 log CFU/g/h으로 온도에 비 례한 것으로 조사되었다. 2차 모델은 μmax의 경우, square root model, LPD는 polynomial equation을 사용하여 산출 하였고, 개발한 모델의 적합성을 평가하기 위해 통계적 지 표인 RMSE 값을 계산한 결과, 비교적 0에 가까운 0.42로 도출되어 모델이 적합한 것으로 확인되었다. 따라서 개발된 모델이 편육에 대한 황색포도상구균의 성장 예측모델로 사용 가능하다고 판단되어지며, 편육에서의 식중독을 예방하고 미생물학적 위생관리기준을 설정하는데 기초자 료로 활용될 수 있을 것으로 사료된다.
PURPOSES: The purpose of this thesis is to evaluate the effectiveness of an active noise cancellation (ANC) system in reducing the traffic noise level against frequencies from the predictive model developed by previous research. The predictive model is based on ISO 9613-2 standards using the Noble close proximity (NCPX) method and the pass-by method. This means that the use of these standards is a powerful tool for analyzing the traffic noise level because of the strengths of these methods. Traffic noise analysis was performed based on digital signal processing (DSP) for detecting traffic noise with the pass-by method at the test site.
METHODS : There are several analysis methods, which are generally divided into three different types, available to evaluate traffic noise predictive models. The first method uses the classification standard of 12 vehicle types. The second method is based on a standard of four vehicle types. The third method is founded on 5 types of vehicles, which are different from the types used by the second method. This means that the second method not only consolidates 12 vehicle types into only four types, but also that the results of the noise analysis of the total traffic volume are reflected in a comparison analysis of the three types of methods. The constant percent bandwidth (CPB) analysis was used to identify the properties of different frequencies in the frequency analysis. A-weighting was applied to the DSP and to the transformation process from analog to digital signal. The root mean squared error (RMSE) was applied to compare and evaluate the predictive model results of the three analysis methods.
RESULTS: The result derived from the third method, based on the classification standard of 5 vehicle types, shows the smallest values of RMSE and max and min error. However, it does not have the reduction properties of a predictive model. To evaluate the predictive model of an ANC system, a reduction analysis of the total sound pressure level (TSPL), dB(A), was conducted. As a result, the analysis based on the third method has the smallest value of RMSE and max error. The effect of traffic noise reduction was the greatest value of the types of analysis in this research.
CONCLUSIONS : From the results of the error analysis, the application method for categorizing vehicle types related to the 12-vehicle classification based on previous research is appropriate to the ANC system. However, the performance of a predictive model on an ANC system is up to a value of traffic noise reduction. By the same token, the most appropriate method that influences the maximum reduction effect is found in the third method of traffic analysis. This method has a value of traffic noise reduction of 31.28 dB(A). In conclusion, research for detecting the friction noise between a tire and the road surface for the 12 vehicle types needs to be conducted to authentically demonstrate an ANC system in the Republic of Korea.
To develop an empirical degree-day model for predicting the spring flight period of the bark beetle, Ips subelongatus Motschulsky, based on field observation, field studies were biweekly conducted in three Japanese larch (Larix kaempferi) forests in In-je, Korea from 2013 to 2014. To validate this degree-day model, we compared the model-predicted values with observed emergence data of I. subelongatus in 2015 spring at one of the sites. The flight period of over-wintering generation began on April and ended May, and flight of next generation lasted until October. The lower developmental threshold temperature (LDT) was estimated using spring emergence of I. subelongatus and field temperatures. Then a degree-day model was constructed, based on LDTs estimated from field observations data. The baseline temperature with the highest coefficient of determination was considered the LDT, and this was estimated to be 6.0℃. The explanatory power of the model was 88%. This model accurately predicted the flight of I. subelongatus in 2015 spring, as the estimated median flight dates was 1 days earlier than the corresponding observed flight date. The results of the goodness-of-fit test did not differ between observed and estimated values (ks = 0.21, P = 0.54).
본 연구에서는 모델 기반의 온실 환경 제어에 활용될 수 있는 미기상 환경 예측 모형을 개발하고자 하였다. 전산유체역학 시뮬레이션을 활용하여 다양한 기상 조건과 온실의 환기 구조에 따른 온실 내부의 미기상 변화와 환기창에서의 환기량 변화를 모의하고, 다중회귀분석을 통해 수치 모형을 제시하였다. 비정상상태의 환기 작용을 모의한 결과, 환기창 개방 후 환기 효과가 완전히 나타나기까지는 3분 ~ 20분 정도의 시간이 소요될 수 있는 것으로 나타났다. 기존의 센서 실측에 기반을 둔 대부분의 환경 조절 제어 시스템의 경우에는 측정값에 따른 피드백에 의해 환경 제어가 동작하므로 온실 내부의 기온이 상승한 이후에 환경 제어를 시작하게 되지만, 모델 기반의 환경 조절 제어 시스템을 도입하면 이러한 3분~20분 정도의 시간을 사전에 고려하여 적정 환경을 제어할 수 있도록 미리 환기창의 조작이 이루어지게 된다. 작은 규모의 온실에서 는 이러한 영향이 미비할 수 있지만, 근래에 증가하고 있는 대규모 온실들에 대해서는 온실 내부 작물 재배 환경의 균일성과 적정성, 안정성을 확보하고 환경 조절의 경제성을 추구할 수 있는 모델 기반의 환경 조절 시스템이 필수적이다. 본 연구에서 제시된 수치 모형들은 외부의 기온과 풍속, 지면 온도, 일사량 등의 기상 환경과 온실의 천창 개폐율에 따라 유도되는 자연 환기의 성능을 온실 내 미기상 변화와 환기창을 통한 환기량 값으로 제시하고 있으며, 전산유체역학 시뮬레이션 결과와 비교하여 각각 58% ~ 92%, 76% ~ 93%의 예측력을 보였다. 미기상의 변화는 온실을 9개의 세부 영역으로 구분하여 각 영역 에서의 기온 하락 정도로 나타내며, 환기량은 지붕에 형성된 6개의 천창에서의 공기 유출입량을 각각 제시하여 준다. 환기 작용에 의한 미기상의 변화는 반드시 환기창에서의 환기량에 의해 예측되지는 않으므로 환기량과 환기의 효과를 구분하여 적용하는 것이 중요할 것이다. 이러한 수치 모형들은 모델 기반 환경 제어 시스템에서 가상의 환기창 동작에 따른 환기 성능을 예측하는데 활용될 수 있으며, 전산유체역학 시뮬레이션과 같은 매우 복잡한 예측 모델이 비해 상당히 간단한 형태로 이루어져 있어 빠른 계산 시간을 보장한다. 이는 실시간 제어의 관점에서는 복잡한 예측 모델들에 비해 실시간 예측 과 제어가 가능하다는 큰 장점을 가져다준다. 본 연구를 통해 개발되고 시도된 결과들은 모델 기반의 온실 복합 환경 제어 시스템을 위한 알고리즘을 개발하는데 활용될 것이다. 또한 이러한 활용은 농업에 IT 기술을 접목하여 농가의 노동력 부족을 극복하고 생산성 향상과 경쟁력 확보를 도모하는 농업 선진화에 기여할 것으로 기대된다.