검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 24

        1.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Raman distributed temperature sensor can be used as temperature instruments as well as monitoring abnormalities in next-generation nuclear systems. Since noise reduction and Measuring Frequency enhancement are required, integration time adjustment has been mainly used so far. In this study, a new data processing method using Moving Average Filter was analyzed to see if noise reduction and Measuring Frequency could be reduced, and improvement measures were suggested.
        4,000원
        2.
        2023.05 구독 인증기관·개인회원 무료
        The high-level nuclear waste (HLW) repository is a 500-1,000 m deep underground structure to dispose high-level nuclear waste. The waste has a very long half-time and is exposed to a number of stresses, including high temperatures, high humidity, high pressure These stresses cause the structure to deteriorate and create cracks. Therefore, structural health monitoring with monitoring sensors is required for safety. However, sensors could also fail due to the stresses, especially high temperature. Given that the sensors are installed in the bentonite buffer and the backfill tunnel, it is impossible to replace them if they fail. That’s why it is necessary to assess the sensors’ durability under the repository’s environmental conditions before installing them. Accelerated life test (ALT) can be used to assess durability or life of the sensors, and it is important to obtain the same failure mode for reliability tests including ALT. Before conducting the test, the proper stress level must be designed first to get reliable data in a short time. After that, acceleration of life reduction with increasing temperature and temperature-life model should be determined with some statistical methods. In this study, a methodology for designing stress levels and predicting the life of the sensor were described.
        3.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to analyze the effect of temperature and humidity on the measured Particulate Matter (PM) concentrations recorded by PMS5003T, a low-cost light scattering type measuring tool. A regression analysis was performed on the ratio of PM concentrations measured by the light scattering method and the beta-ray absorption method according to temperature and humidity in an outdoor environment. As the temperature decreased, the PM concentration ratio increased, and this tendency intensified below 0oC. As the humidity increased, the PM concentration ratio increased, but the effect was less than the temperature effect. The coefficients of determination for temperature and humidity were R2 = 0.325 and 0.003, respectively, and the effects of temperature and humidity on the measured values w ere formulated and compensated for. As a result of the compensation, R2, relative precision, accuracy and RMSE improved from 0.927 to 0.958, from 91.183% to 96.651%, from 31.383% to 74.058%, and from 13.517 μg/m³ to 6.690 μg/m³, respectively. Finally, results from this study indicate that the reliability of the low-cost light scattering type PM sensor can be improved by applying the temperature and humidity compensation method.
        4,000원
        4.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Most sensors are affected by temperature, so they are tested in advance and used for temperature compensation. However, sensor affected by the temperature hysteresis is not compensated. This is because even if compensation is made in the form of a general n-th polynomial, the effect of hysteresis remains the same. In this paper, a method of compensating accelerometer biases with hysteresis using a new parameter C was studied. This technique goes beyond finding the appropriate variable for compensation and is a method of creating the parameter itself with a combination of new variables. As a result, most errors could be eliminated.
        4,000원
        10.
        2018.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, measuring instruments for SHM of structures has been developed. In general, the wireless transmission of sensor signals, compared to its wired counterpart, is preferable due to the absence of triboelectric noise and elimination of the requirement of a cumbersome cable. However, in extreme environments, the sensor may be less sensitive to temperature changes and to the distance between the sensor and data logger. This may compromise on the performance of the sensor and instrumentation. Therefore, in this paper, free vibration experiments were conducted using wireless MEMS sensors at an actual site. Measurement was assessed in time and frequency domain by changing the temperature variation at(- 8℃, - 12℃ and - 16℃) and the communication distance (20m, 40m, 60m, 80m).
        4,000원
        11.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The study analyzed performance assessment factors of odor sensors from 4 different manufacturers, including minimum detection limit, humidity stability and temperature stability. In the minimum detection limit assessment, only one electrochemical gas sensor was able to detect ammonia and hydrogen sulfide at the concentration of 5 ppb. The standard deviation ratio was over 10%, and it increased as humidity rose. The range of temperatures in which the electrochemical and photoionization gas sensors could function well was between 25oC and 40oC, and the sensor output values were unstable at low temperatures. Regarding the temperature stability of the metal oxide semiconductor sensor for measuring complex odors, the sensor output values dropped considerably to 0~10oC, and were similar to the concentrations of odor gases generated at 25oC. The results of the test of odor sensor outputs after temperature and humidity pre-treatment revealed that the respective stable output values at 50% humidity and 25oC were similar to the concentrations of manufactured odors. In terms of temperature and humidity stability of the NH3, H2S and Complex odor sensors, all target substances had stable output values at 25~40oC and 50~65% relative humidity, and unstable values at low temperatures and high humidity. Therefore, implementing pretreatment systems including temperature and humidity correction (25~40oC, 50~65% RH) is necessary for the stable use of odor sensors.
        4,900원
        12.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fire detectors are designed to minimize loss of life from a fire alarm system as an alarm to help evacuate more quickly until the completion of the evacuation alarm should be continued. the purpose of such alarms in order to achieve the characteristic fire heat release rate reaches a certain level, or when a certain time has elapsed, when the heat detector is to be alarms to answer. Requires a quick response, it is desirable to install the sensor as much as possible, but taking into account the cost of installation problems by engineering approach to minimize the quantity and rapidity of detection capability should be increased. In order to increase the rapidity of fire detectors in a room according to the height of the sensing period is to be maintained the optimum distance of the fire detector detects characteristics should be considered. Differential spot-type heat detectors installed domestic basis, depending on the type of sensor that can detect one sensor area is limited and less than 4m ceiling height regulations and simply double the number in excess of 4m and intended to be installed
        4,200원
        13.
        2009.09 구독 인증기관 무료, 개인회원 유료
        This study tried to develop the system (device) that automatically notify a manager of condition just before and after farrowing to extend ubiquitous-based technology and to increase efficiency of delivery care and productivity by reducing human labor and time on standby when farrowing management is done in the difficult and hard working environment of farrowing such as night or holidays in field sand especially in pig industry. In this test, selected 10 gilts were executed timed artificial insemination and were set up each temperature sensor and load sensor to them 3 days before the estimated farrowing day and were observed the farrowing situation. This study was embodied the NESPOT-based (KT Corporation) monitoring system, the system to transmit data in real time by utilization of wireless LAN and the sensor module to apply the ubiquitous environment to them. And this study was observed the situation to automatically notify situations of 10 gilts that first bore just before and after farrowing. The result obtained the farrowing situations of them in real time by setup of the NESPOT-based monitoring system to check farrowing situation directly is as follow. The average time of the automatic notice about situation just before farrowing by the temperature sensor was 27.5 minutes before the beginning of farrowing (the expulsion time of a piglet). 6 of 8 pregnant gilts that first bore automatically were notified situations just before farrowing and the temperature sensors inserted into 2 ones before farrowing were omitted. (The automatic notice rate 75%) The average time of the automatic notice of situation just after farrowing by the load sensor was taken 46.5 minutes after the beginning of farrowing (the expulsion time of a first piglet). The average gestation period of 8 ones that first bore and were tested by the automatic notice of farrowing situation was 115.6 days. This result found that the automatic farrowing notice system by the temperature sensor is more efficient than the load sensor as the automatic farrowing alarm device and sanitary treatment and improvement of the omission rate were required.
        4,000원
        15.
        2019.12 KCI 등재 서비스 종료(열람 제한)
        Some animals have special sensing functions in order to find foods, home and mates. Instead of passively sensing, they discharge signals and then extract necessary information from the response. More importantly, they utilize the gradients of the sensed signal in order to find the destination or objects. In this paper this special strategy is formulated mathematically, i.e., the perturbation and the correlation based gradient estimation is developed. A stereo sensor system using temperature sensors mounted on motors is developed for verification. The proposed method can estimate the gradient of the measured value accurately. Using this method, the direction in the maximum measured value can be estimated accurately, and the position of the heat source can be estimated from the intersection of the directions estimated from both sensors.
        16.
        2019.04 서비스 종료(열람 제한)
        A monitoring technique of ground anchor force is now studying by measuring the strains distributed on a bearing plate. These distributed strains are measured by a fiber optic OFDR (Optical Frequency Domain Reflectometer) sensor. A sensing optical fiber was attached on the bearing plate at the two radial locations and tested by a universal test machine. The anchor forces can be calculated from the differences of these two trains.
        17.
        2018.10 서비스 종료(열람 제한)
        Prediction of compressive strength of concrete by Maturity Method is applied in construction site. However, due to the use of wired type high-priced equipment, economic efficiency and workability are falling. In this study, a newly developed concrete embedded wireless sensor is used to perform a mock-up test. Next, the concrete compressive strength of the Maturity Method is predicted using Saul and Plowman's function as measured temperature data. The predicted concrete strength at the beginning of the age was the actual strength and stiffness, but the error rate was less than 1% at 28th day.
        18.
        2018.04 서비스 종료(열람 제한)
        Prediction of the compressive strength of the maturity method has been studied by several researchers and has been applied to the construction of concrete structures. In order to apply the maturity method, which is a function related to temperature and time, it is important to measure the accurate temperature inside the concrete during the curing period. The purpose of this study is to verify the performance by analyzing sensitivity, measurement and transmission accuracy by exposing wireless embedded sensor to various curing environment.
        19.
        2018.04 서비스 종료(열람 제한)
        Distributed optical fiber sensors have been developed to detect the occurrence of structural anomalies such as excessive stresses, cracks, and leaks at arbitrary locations in the facility. In this paper, we demonstrate fiber optic OFDR (Optical Frequency Domian Reflectometry) sensor to measure strain and temperature through the sensing optical fiber. A PVC pipe was prepared to show the strain measurement performance with a sensing optical fiber attached on the pipe. Also, a temperature test was performed with a sensing optical fiber located in a temperature chamber. In the results, this sensor can operate to resolve 14.2 micro strain and 1.62 degree temperature at the condition of 5 cm spatial resolution.
        20.
        2014.04 서비스 종료(열람 제한)
        The FBG sensor responses simultaneously to changes in thermal strain as well as elastic strain. Thus the total strain measured from a single FBG sensor shall be corrected to obtain the elastic strain by removing the temperature effect. This paper addresses how the temperature effect can be removed when the FBG sensor is encapsulated in a 7-wire steel strand. For this purpose, fundamental properties of the FBG sensor are identified through tests using a controlled temperature chamber. Then field measurements on a UHPC pi girder with the size of 11.0 m long, 5.0 m wide, and 0.6 m high have been conducted for about one year, and the prestressing force is estimated using the raw data from the FBG sensor and by applying temperature correction technique proposed in this study. Estimated results indicate that the proposed correction technique is executable for extracting the elastic strain from monitoring data using the FBG sensor in civil infrastructures.
        1 2