검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 98

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Considering the characteristics of aldehydes among volatile organic compounds, a combined process was established by linking an absorbent and a photocatalytic reactor. Experiments to find the optimal operating conditions of the combined process showed that as the amount of photocatalyst coating increases, the wavelength of the ultraviolet lamp used becomes shorter, the photodegradation rate becomes faster, and the removal efficiency increases. It was also demonstrated that by controlling the relative humidity during the connection process of the combined process, the re-evaporation phenomenon at the front end (absorption area) of the hybrid process can be improved and the removal efficiency at the back end (photocatalytic reaction area) can be significantly enhanced. This confirmed the need for a combined process that complements the advantages and disadvantages of each process.
        4,000원
        2.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Volatile organic compounds (VOCs) are a paramount factor in air pollution of the environment. VOCs are vastly present in the wastewater discharged by the pharmaceutical industries. As it is evaporative in nature, it enters the environment spontaneously and causes air pollution, global warming, acid rain and climate change. VOCs must be treated before discharging or any other aerobic methods using an efficient catalyst. As the catalytic oxidation in the liquid phase is facile compared to the gas phase, this study investigated on catalytic liquid-phase oxidation of VOCs in model and real pharmaceutical wastewater. The model compounds of toluene-, ethylbenzene- and chlorobenzene-contaminated waters were treated separately along with the VOCs present in real pharmaceutical wastewater using a tungsten-based carbon catalyst. The tungsten was impregnated on the low-cost activated carbon matrix as it has good selectivity and catalytic property toward VOCs for facile catalytic operations. The metal catalysts were characterised by Fourier transform infrared spectroscopy, X-ray diffraction studies, and scanning electron microscopy with elemental and mapping analysis. The treatability was monitored by total organic carbon, ultra-violet spectroscopy and high-pressure liquid chromatography analysis. The tungsten-impregnated activated carbon matrix (WACM) has a catalytic efficiency toward toluene by 85.45 ± 1.78%, ethylbenzene by 93.9 ± 1.16%, chlorobenzene by 85.9 ± 2.26% and pharmaceutical VOCs by 85.05 ± 1.73% in 20 treatment cycles. The results showed that WACM worked efficiently in VOCs treatment, preventing the environment from air pollution. Furthermore, liquid-phase oxidation could easily be implementable on an industrial scale.
        5,200원
        3.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We used the measurement data derived from a proton transfer reaction time-offlight mass spectrometry (PTR-ToF-MS) to ascertain the source profile of volatile organic compounds (VOCs) from 4 major industrial classifications which showed the highest emissions from a total of 26 industrial classifications of A industrial complex. Methanol (MOH) was indicated as the highest VOC in the industrial classification of fabricated metal manufacture, and it was followed by dichloromethane (DM), ethanol (EN) and acetaldehyde (AAE). In the industrial classification of printing and recording media, the emission of ethylacetate (EA) and toluene (TOL) were the highest, and were followed by acetone (ACT), ethanol (EN) and acetic acid (AA). TOL, MOH, 2-butanol (MEK) and AAE were measured at high concentrations in the classification of rubber and plastic manufacture. In the classification of sewage, wastewater and manure treatment, TOL was the highest, and it was followed by MOH, H2S, and ethylbenzene (EBZ). In future studies, the source profiles for various industrial classifications which can provide scientific evidence must be completed, and then specified mitigation plans of VOCs for each industrial classification should be established.
        4,600원
        6.
        2021.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The emission of particulate matter and volatile organic compounds (VOCs) from a motor vehicle painting booth was quantitatively evaluated. Most particulate matter was emitted during the spraying process, in which the PM10 concentration was 16.5 times higher than that of the drying process. When the paint was being sprayed, the particles with a diameter of 1.0~2.5 μm accounted for 39.4% and particles greater than 2.5 μm in diameter accounted for 30.6% of total particles. On the other hand, small particles less than 0.5 μm in diameter accounted for 52.4% of total particles during the drying process. In contrast to the particulate matter, high concentrations of VOCs were emitted during both spraying and drying processes. Butyl acetate, xylene, toluene, and m-ethyltoluene were the most abundant VOCs emitted from the motor vehicle painting booth. Additionally, xylene, butyl acetate, toluene, and 1,2,3-trimethylbenzene were the dominant ozone precursors. Especially, xylene exhibited the highest ozone production contribution (32.5~44.4%) among 34 species of the ozone precursors. The information obtained in this study can be used to establish a suitable management strategy for air pollutants from motor vehicle painting booths.
        4,200원
        7.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Activated carbon fibers (ACFs) were treated by electroless plating of CuO to improve their removal performance for volatile organic compounds (VOCs). The properties of these samples(CuO@ACFs) were evaluated by X-ray photoelectron spectroscopy (XPS), BET and N2O chemisorption to determine the area and dispersion of metallic CuO. The removal efficiency for benzene was investigated by gas chromatography (GC). The breakthrough time of CuO@ACFs increased by approximately 120% compared to that of untreated ACFs at benzene of 100 ppm. CuO@ACFs removed 100% of the benzene in 20 h, indicating this material can be used as a removal technology for VOCs.
        4,000원
        8.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The concentration of TVOCs in public transportation in the spring and summer of 2018 was measured. Public transportation measured the concentration of TVOCs on six subway lines in Seoul, two lines of high-speed trains, and intercity buses. The measurements were taken during the operation of each route of the surveyed public transportation from the origin to the destination. In addition, the measurement time was divided into the congestion time and the non-congestion time. In the spring of 2018, in the order of subway, train A, train B, and intercity buses, TVOC concentrations during the congestion time zone were 205.9 μg/m3, 121.3 μg/m3, 171.1 μg/m3, and 88.7 μg/m3, respectively. During the non-congestion time zone, the concentrations were 177.2 μg/m3, 108.8 μg/ m3, 118.2 μg/m3, and 126.1 μg/m3, respectively. In the summer of 2018, TVOC concentrations in the order of the aforementioned transportation modes during the congestion time zone were 169.8 μg/m3, 175.8 μg/m3, 78.0 μg/ m3, and 185.3 μg/m3, respectively. During the non-congestion time zone, the concentrations were 210.8 μg/m3, 116.1 μg/m3, and 162.7 μg/m3, respectively. An analysis of BTEX concentration among VOCs in public transportation in descending order were followed by toluene > xylene > ethylbenzene > benzene. Toluene, which has the highest concentration among the BTEX compounds, was found to be 12.86 μg/m3 to 91.41 μg/m3 during spring congestion time and 7.10 μg/m3 to 39.52 μg/m3 during non-congestion time. During the summer congestion time, the concentration was 6.68 μg/m3 to 249.48 μg/m3 and 13.23 μg/m3 to 214.5 μg/m3 during the non-congestion time. The concentration of benzene was mostly less than 5 μg/m3 in transportation. Particularly in the case of toluene, the concentration is significantly higher than that of other VOCs. Accordingly, further study of toluene exposure hazards will be needed. Five percent of the surveyed TVOC concentrations exceeded the recommended indoor air quality standard of 500 μg/m3, and all 13 cases representing this percentage were found in the subway. In addition, nine of the 13 cases that exceeded the recommended standard were measured during congestion time. Therefore, VOCs in public transportation vehicles during congestion time need to be managed.
        4,000원
        9.
        2020.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Organic-inorganic hybrid perovskite nanocrystals have attracted a lot of attention owing to their excellent optical properties such as high absorption coefficient, high diffusion length, and photoluminescence quantum yield in optoelectronic applications. Despite the many advantages of optoelectronic materials, understanding on how these materials interact with their environments is still lacking. In this study, the fluorescence properties of methylammonium lead bromide (CH3NH3PbBr3, MAPbBr3) nanoparticles are investigated for the detection of volatile organic compounds (VOCs) and aliphatic amines (monoethylamine, diethylamine, and trimethylamine). In particular, colloidal MAPbBr3 nanoparticles demonstrate a high selectivity in response to diethylamine, in which a significant photoluminescence (PL) quenching (~ 100%) is observed at a concentration of 100 ppm. This selectivity to the aliphatic amines may originate from the relative size of the amine molecules that must be accommodated in the perovskite crystals structure with a narrow range of tolerance factor. Sensitive PL response of MAPbBr3 nanocrystals suggests a simple and effective strategy for colorimetric and fluorescence sensing of aliphatic amines in organic solution phase.
        4,000원
        10.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        n-Nonane, 1¸2¸4-trimethylbenzene (124-TMB), toluene, total xylene (TXYL), isopropyl alcohol (IPA), and methyl ethyl alcohol (MEK) are major volatile organic compounds (VOCs) emitted from printing industries. The absorption amount of a single VOC per unit weight of silicone oil was as follows in the order of 189.5 g/kg-silicone oil for n-nonane, 91.7 g/kg-silicone oil for 124-TMB, and 60.1 g/kg-silicone oil for TXYL. Although hydrophobic VOCs were more absorbed in silicone oil than hydrophilic VOCs such as IPA and MEK, IPA and MEK, which had log Kow values of 1 or less, also were absorbed more than 26.0 g/kg-silicone oil. In two and three mixed VOCs of n-nonane, 124-TMB, and toluene, the absorption amount of each in silicon oil was less than that of single a VOC. The total absorption amount of two mixed VOCs ranged from 47.9 g to 138.7 g/kg-silicone oil, and the total absorption amount of three mixed VOCs was 65.8 g/kg-silicone oil. These results suggest that silicone oil is a promising pretreatment solution capable of absorbing high concentrations of VOCs that are intermittently emitted from printing industries. The absorption information of VOCs obtained in this study can be used as the design parameters of a damping device for the pretreatment of VOCs.
        4,000원
        11.
        2020.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The concentrations of volatile organic compounds (VOCs) and odor-inducing substances were measured using selected ion flow tube mass spectrometers (SIFT-MS) and a drone equipped with an air quality monitoring system. SIFT-MS can continuously measure the concentration of VOCs and odor-inducing substances in realtime without any pre-treating steps for the sample. The vehicle with SIFT-MS was used for real-time measurement of VOC concentration at the site boundaries of pollution sources. It is possible to directly analyze VOCs concentration generated at the outlets by capturing air from the pollution sources with a drone. VOCs concentrations of nine spots from Banwol National Industrial Complex were measured by a vehicle equipped with SIFT-MS and were compared with the background concentration measured inside the Metropolitan Air Quality Management Office. In three out of the nine spots, the concentration of toluene, xylene, hydrogen sulfide, and methyl ethyl ketone was shown to be much higher than the background concentration. The VOCs concentrations obtained using drones for high-concentration suspected areas showed similar tendencies as those measured using the vehicle with SIFTMS at the site boundary. We showed that if both the drone and real-time air quality monitoring equipment are used to measure VOCs concentration, it is possible to identify the pollutant sources at the industrial complex quickly and efficiently check sites with high concentrations of VOCs.
        4,000원
        12.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fibrous adsorbents, such as activated carbon fibers (ACF) have acknowledged advantages of rapid adsorption rate and ease of modification compared with granular and powdered adsorbents. Based on the surface modification of lyocell-based ACF, we observed different surface characteristics of ACF samples with variation in the mixing ratio and impregnation time of H3PO4, NaCl, and KMnO4 solution. For an engineering application, we also explored the adsorption characteristics of thusproduced ACF samples onto volatile organic compounds (VOCs). Isothermal adsorption experiments were performed using toluene and benzene as adsorbates. Results indicate that both physical and chemical surface properties have an effect on the adsorption of volatile organic compounds (VOCs).
        4,000원
        13.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 스파티필름의 수분 스트레스 정도에 따라 실내 공간 내 오염물질 제거 효율을 구명하고자 수행하였다. 식물이 없는 공간을 대조구, 정상적인 스파티필름과 수분 스트레스를 받은 스파티필름을 각각의 처리구로 하였다. 스파티필름의 수분 스트레스 유무에 따른 chamber 내 온도를 조사한 결과 대조구와 처리구 모두 식물의 생육 적정 범위인 23±1℃를 유지하였으며, 처리 간의 0.7℃의 차이를 보였다. 습도의 경우 대조구와 처리구는 유의차 있게 나타났으며, 처리 간의 유의 차는 없는 것으로 나타났다. 수분 스트레스에 따른 실내 오염 물질을 조사한 결과, 포름알데히드(Formaldehyde) 경우 대조구는 0.30mg・m-3, 정상적인 스파티필름은 0.05mg・m-3 , 수분 스트레스를 받은 스파티필름은 0.09mg・m-3으로 대조구와 처리구는 통계적으로 유의차를 보였으며, 식물 내 수분 스트레스에 따른 처리구간에는 유의차가 없었다. TVOC(Total Volatile Organic Compound)조사 결과, 정상적인 스파티필름의 TVOC는 5시간 후 0.00mg・m-3 으로 모두 제거 된 반면, 수분 스트레스를 받은 스파티필름은 0.34mg・m-3으로 다소 남아 있었으며, 대조구는 1.25mg・m-3으로 세 처리 모두 통계적으로 유의차 있게 나타났다. 또한 이산화탄소 변화량 조사결과, 대조구는 459ppm, 정상 스파티필름은 446ppm으로 통계적으로 유의한 차이는 없으며, 수분 스트레스를 받은 스파티 필름이 대조구보다 이산화탄소 함량이 다소 높았다. 기공변화율 조사 결과, 정상 스파티필름의 변화율은 높게 나타났으며, 수분 스트레스를 받은 스파티필름은 변화율이 낮은 것으로 조사되었다. 따라서, 스파티필름이 배치되어있지 않은 공간보다 배치된 공간이 공기정화에 효과적이며, 수분 스트레스를 받은 스파티필름은 실내오염물질 제거에 있어서 기공 변화율 및 이산화탄소 흡수능력이 저하되므로 스파티필름을 이용하여 효과적으로 실내오염물질을 제거하기 위해서는 적절한 수분 관리가 필요한 것으로 판단된다.
        4,000원
        14.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we listed the VOCs focusing on ozone precursors emitted from printing shops in urban areas. The emission characteristics of the VOCs from workplaces were evaluated in terms of the used inks. As a result of field measurements, more than 80% of detected VOCs showed high values of photochemical ozone creation potential (POCP). The main species were aromatic hydrocarbons such as ethylbenzene, toluene, ethyltoluene, xylene, trimethylbenzene and their isomers, and paraffin hydrocarbons such as nonane, decane, and octane. Comparative examination between pristine ink and the printing process revealed the emission of hydrocarbons with 8 to 12 carbons such as o-xylene to n-dodecane from the used inks and with 3 to 7 carbons such as acetone to 3-methylhexane from the printing process. The major contributors to ozone production in printing industries were toluene (12.2%), heptane (7.43%), and 1,2,3-trimethylbenzene (7.21%) in every step.
        4,200원
        16.
        2019.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we measured the concentration of total volatile organic compounds (TVOCs) in four different seasons from 2016 to 2017 in order to determine seasonal variation of indoor air quality in relation to public transportation modes (subways, trains, and express buses). The measurement was carried out both during rush hour when traffic was congested as well as during non-rush hour when traffic was not congested. Effects by season, degree of congestion, and characteristics of public transportation were analyzed on the basis of 295 items of data during the periods of congestion and 295 items of data during the periods of non-congestion. The average TVOCs concentration in winter was the highest with 226.4 μg/m 3 . The average TVOCs concentration on an express bus was the highest with a seasonal average of 142.3 μg/m 3 . The TVOCs concentration in the period of congested traffic was higher than in the period of non-congested traffic for all public transportation modes. For the average TVOCs concentration by season and transportation, there was no data that exceeded the guidelines regarding maintaining indoor air quality. However, 2.5% of all sample measured data (TVOCs) exceeded the guidelines regarding maintaining indoor air quality. Therefore, the continuous monitoring of public transport vehicles is required.
        4,000원
        17.
        2019.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to determine the absorption properties of silicone oil, liquid paraffin, and silicone rubber as absorbents for hydrophobic volatile organic compounds (VOCs) mainly emitted from the printing and publishing industry through VOCs absorption efficiency and partition coefficient. Also, changes in absorbability were tested through blending of absorbents and load of target VOCs mixtures. The results obtained can be used as fundamental data to choose an appropriate absorbent. All of the three absorbents showed an excellent absorption efficiency of above 98% for each 5 wt% load of the target VOCs including toluene, xylene, methyl ethyl ketone (MEK), isopropyl alcohol (IPA), 1,2,4-trimethylbenzene (124-TMB), and n-Nonane. In terms of toluene load, all absorbents showed good absorption efficiency of above 95% to a high load of 15 wt%. The air-absorbent partition coefficient of each target compound (P value) exhibited the highest value of 9.8 × 10−5 for 124-TMB in silicone rubber and the lowest value of 1.6 × 10−2 for IPA in liquid paraffin. These results indicate that the target VOCs had high affinity for the three absorbents. Absorption efficiency for the target VOCs at various absorbent blending ratios using three kinds of absorbents was improved to 99.9% regardless of the absorbent type or blending ratio. This result suggests that the shortcomings of single absorbents can be overcome through absorbent blending, enabling cost reduction and applicability to a dry-type treatment process. In treatment for mixture of the target VOCs to mimic an actual VOCs treatment, the absorption performances of silicone oil showed an absorption efficiency of 99% for 16 wt% of total VOCs load. These results indicated that silicone oil could be considered as a good absorbent.
        4,200원
        18.
        2019.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A pilot-scale biocover was installed at a sanitary landfill for municipal waste, and the removal of volatile organic compounds (VOCs) by the biocover was evaluated for a long period of 550 days. The biocover (2.5 m W × 5 m L × 1 m H) was constructed with the mixture of soil, perlite, earthworm cast and compost (6:2:1:1, v/v). The total VOCs concentration of the inlet gas into the biocover was 820.3 ppb~7,217.9 ppb, and the total VOCs concentration of the outlet gas from the surface of the biocover was 12.6 ppb~1,270.1 ppb. The average removal efficiency of total VOCs was 87.6 ± 11.0% (60.5% for minimum and 98.5% for maximum). Toluene concentration was the highest among the inlet VOCs, followed by ethylbenzene, m, p-xylene and o-xylene. These aromatic VOCs accounted for more than 50% of the total VOCs concentration. Other than these aromatic VOCs, hexane, cyclohexane, heptane, benzene, and acetone were major VOCs among the inlet VOCs. Compared with the VOC profiles in the inlet gas, the relative contribution of dichloromethane to the outlet VOCs emitted from the biocover layer increased from 0.1% to 15.3%. The average removal efficiencies of BTEX in the biocover were over 84% during the operation period of 550 days. The average removal efficiencies of hexane, cyclohexane and heptane in the biocover were 86.0 ± 18.9%, 85.4 ± 20.4% and 97.1 ± 4.0%, respectively. The removal efficiency of VOCs in the biocover decreased not only when the ambient temperature had fallen below 5oC, but also when the ambient temperature had risen above 23oC. Information on the VOCs removal characteristics of the biocover installed in the landfill field can be useful for commercializing the biocover technology for the treatment of VOCs.
        4,900원
        19.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Volatile organic compounds(VOCs) are toxic carcinogenic compounds found in wastewater. VOCs require rapid removal because they are easily volatilized during wastewater treatment. Electrochemical advanced oxidation processes(EAOPs) are considered efficient for VOC removal, based on their fast and versatile anodic electrochemical oxidation of pollutants. Many studies have reported the efficiency of removal of various types of pollutants using different anodes, but few studies have examined volatilization of VOCs during EAOPs. This study examined the removal efficiency for VOCs (chloroform, benzene, trichloroethylene and toluene) by oxidization and volatilization under a static stirred, aerated condition and an EAOP to compare the volatility of each compound. The removal efficiency of the optimum anode was determined by comparing the smallest volatilization ratio and the largest oxidization ratio for four different dimensionally stable anodes(DSA): Pt/Ti, IrO2/Ti, IrO2/Ti, and IrO2-Ru-Pd/Ti. EAOP was operated under same current density (25 mA/cm2) and electrolyte concentration (0.05 M, as NaCl). The high volatility of the VOCs resulted in removal of more than 90% within 30 min under aerated conditions. For EAOP, the IrO2-Ru/Ti anode exhibited the highest VOC removal efficiency, at over 98% in 1 h, and the lowest VOC volatilization (less than 5%). Chloroform was the most recalcitrant VOC due to its high volatility and chemical stability, but it was oxidized 99.2% by IrO2-Ru/Ti, 90.2% by IrO2-Ru-Pd/Ti, 78% by IrO2/Ti, and 75.4% by Pt/Ti anodes The oxidation and volatilization ratios of the VOCs indicate that the IrO2-Ru/Ti anode has superior electrochemical properties for VOC treatment due to its rapid oxidation process and its prevention of bubbling and volatilization of VOCs.
        4,200원
        20.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, volatile organic compounds (VOCs) emitted from printing industries were analyzed, and an inorganic adsorbent, γ-alumina, was selected for the effective control of the VOC emissions. Printing processes commonly require inks, thinners, and cleaners, and they were mixed organic solvents containing aromatic compounds, ketones, and alcohols. Therefore, toluene, methyl ethyl ketone (MEK), and isopropyl alcohol (IPA) were selected as model compounds for this study. The adsorptive properties using γ-alumina were determined for the model compounds. Both batch isotherm and continuous flow column tests demonstrated that the adsorption capacity of MEK and IPA was 3~4 times higher than that of toluene. The column test performed at an inlet toluene concentration of 100 ppm showed that an 80% breakthrough for toluene was observed after 3 hours, but both MEK and IPA were continuously adsorbed during the same time period. A numerical model simulated that the γ-alumina could remove toluene at a loading rate of 0.4 mg/min only for a 4-hour period, which might be too short of a duration for real applications. Consequently, lifetime enhancement for γ-alumina must be implemented, and ozone oxidation and regeneration would be feasible options.
        4,000원
        1 2 3 4 5