In this study, factors considered to be causes of promotion of densification of sintered pellets identified during phase change are reviewed. As a result, conclusions shown below are obtained for each factor. In order for MA powder to soften, a temperature of 1,000 K or higher is required. In order to confirm the temporary increase in density throughout the sintered pellet, the temperature rise due to heat during phase change was found not to have a significant effect. While examining the thermal expansion using the compressed powder, which stopped densification at a temperature below the MA powder itself, and the phase change temperature, no shrinkage phenomenon contributing to the promotion of densification is observed. The two types of powder made of Ti-silicide through heat treatment are densified only in the high temperature region of 1,000 K or more; it can be estimated that this is the effect of fine grain superplasticity. In the densification of the amorphous powder, the dependence of sintering pressure and the rate of temperature increase are shown. It is thought that the specific densification behavior identified during the phase change of the Ti-37.5 mol.%Si composition MA powder reviewed in this study is the result of the acceleration of the powder deformation by the phase change from non-equilibrium phase to equilibrium phase.
Spatial distributions of alloying elements of an Fe-based amorphous ribbon with a nominal composition of Fe75C11Si2B8Cr4 were analyzed through the atom probe tomography method. The amorphous ribbon was prepared through the melt spinning method. The macroscopic amorphous natures were confirmed using an X-ray diffractometer (XRD) and a differential scanning calorimeter (DSC). Atom Probe (Cameca LEAP 3000X HR) analyses were carried out in pulsed voltage mode at a specimen base temperature of about 60 K, a pulse to base voltage ratio of 15 %, and a pulse frequency of 200 kHz. The target detection rate was set to 5 ions per 1000 pulses. Based on a statistical analyses of the data obtained from the volume of 59×59×33nm3, homogeneous distributions of alloying elements in nano-scales were concluded. Even with high carbon and strong carbide forming element contents, nano-scale segregation zones of alloying elements were not detected within the Fe-based amorphous ribbon. However, the existence of small sub-nanometer scale clusters due to short range ordering cannot be completely excluded.
A 532 nm Nd-YAG laser was applied to crystallize amorphous Si thin films in order to evaluate the applicability of a Nd-YAG laser to low-temperature polycrystalline Si technology. The irradiation of a green laser was controlled during the crystallization of amorphous Si thin films deposited onto glass substrates in a sophisticated process. Raman spectroscopy and UV-Visible spectrophotometry were employed to quantify the degree of crystallization in the Si thin films in terms of its optical transmission and vibrational characteristics. The effectiveness of the Nd-YAG laser is suggested as a feasible alternative that is capable of crystallizing the amorphous Si thin films.
The magnetic inductance of nanocrystalline Fe73Si16B7Nb3Cu1 and an amorphous FeSiB powder sheet has been investigated to identify RFID performance. The powder was mixed with binder and solvent and tape-casted to form films. Results show annealing significantly influenced on the inductance of the material. The surface oxidation of the particles was the main reason for the reduced inductance. The maximum inductance of Fe73Si16B7Nb3Cu1 alloy was about 88μH at 17.4 MHz, about 65% greater compared to the FeSiB alloy. The higher inductance in the nanocrystalline alloy indicates it may be used as a potential replacement of current RFID materials.
Co-Fe-Ni-B-Si-Cr based amorphous strips containing nitrogen were manufactured via melt spinning, and then devitrified by crystallization treatment at the various annealing temperatures of for up to 30 minutes in an inert gas atmosphere. The microstructures were examined by using XRD and TEM and the magnetic properties were measured by using VSM and B-H meter. Among the alloys, the amorphous ribbons of containing 121 ppm of nitrogen showed relatively high saturation magnetization. The alloy ribbons crystallized at showed that the grain size of alloy containing 121 ppm of nitrogen was about f nm, which exhibited paramagnetic behavior. The formation of nano-grain structure was attributed to the finely dispersed Fe4N particles and the solid-solutionized nitrogen atoms in the matrix. Accordingly, it can be concluded that the nano-grain structure of 5nm in size could reduce the core loss within the normally applied magnetic field of 300A/m at 10kHz.
플라즈마 화학증착 (PECVD) 장비를 이용하여 SnO2 투명전도막이 피막된 유리기판 위에 p-SiC/i-Si/n-Si 이종접합 태양전지를 제작하였다. p-SiC 층의 증착중에 기체조성 x=CH4/ (SiH4+CH4)의 변화에 대한 태양전지의 광기전 특성을 관찰하였다. 기체조성(x)이 0~0.4의 범위에서 p-SiC 창층의 광학적 밴드갭의 증가로 인하여 태양전지의 효율은 증가하였으나, 그 이상의 기체조성에서는 p-SiC/i-Si 계면에서의 조성불일치가 증가하여 태양전지의 효율이 감소하였다. 이러한 계면문제는 p-SiC 층과 i-Si 계면에서의 조성불일치가 증가하여 태양전지의 효율이 감소하였다. 이러한 계면문제는 p-SiC 층과 I-Si 층 사이에 I-SiC 완충층을 삽입함으로써 크게 감소하였다. 그 결과 유효면적이 1cm2인 glass/SnO2/p-SiC/i-SiC/i-Si/n-Si/Ag 구조의 박막 태양전지는 100mW/cm2 조도 하에서 8.6%의 효율을 나타내었다. (Voc=0.85V, Jsc=16.42mA/cm2, FF=0.615)
단결정 Si(100) 기판과 비정질 Si 기판위에 Co/Zr 이중층을 이용하여 형성시킨 Co 실리사이드의 성장 거동에 대하여 연구하였다. 전자빔 증착기를 사용하여 단결정과 비정질 Si 기판위에 Zr 50Å과 Co 100Å을 차례로 증착한 박막을 500˚C부터 800˚C까지 100˚C 간격으로 질소 분위기에서 30초 동안 급속열처리를 하여 Co 실리사이드를 형성시켰다. 각 온도에서 열처리된 시편의 상형성, 화학적 조성, 계면의 형상, 전기적 특성을 XRD, AES, RBS, TEM, HRTEM 등으로 분석하였다. 분석 결과 CoSi2 상이 단결정 기판에서는 700˚C 이상에서 기판과 정합성장을 하였고 비정질 기판에서는 다결정 성장을 하였으며 Co 실리사이드의 상형성 온도는 단결정 기판에서보다 비정질 기판에서 100˚C정도 낮아졌다. CoSi2와 같은 Co rich 중간상은 두 기판 모두 형성되지 않았으며 초기 Co 실리사이드의 상형성 온도는 Co 단일층으로 상을 형성시킬 때 보다 더 높았다. Co 실리사이드와 Si 기판의 계면의 형상은 단결정 기판의 경우보다 비정질 기판에서 더 균질하였다. 박막의 면저항은 600˚C이하의 열처리 온도에서는 비정질 기판에서 형성된 Co 실리사이드 박막이 더 낮은 값을 나타내었고 그 이상의 열처리 온도에서는 단결정 기판에서 형성된 박막의 면저항값이 더 낮은 값을 나타내었으며 두가지 기판에서 형성된 박막 모두 800˚C에서 가장 낮은 면저항 값을 보였다.
비정질 금속 Co66F e4Ni B14S i15 의 표면층 제거에 대한 자기임피턴스 효과는 시료의 길이방향에 평행한 일축자기장에 대하여 측정하였다. MIR(Magnetoimpedance Ratios)은 비정질 금속의 두께가 얇아짐에 따라 감소하고, 전류에 비례하여 증가하는 경향을 나타내었다. 인가전류 주파수에 대한 MIR과 자기장의 감도는 모든 시료에서 주파수에 비례하여 증가하며 수 MHz 부근에서 최대값을 가지고 점차 감소하는 경향을 나타내었다. 시료의 표면층제거에 기인한 이방성자기장의 변화는 MI RMax을 나타내는 외부 자기장을 감소시키지만, MIR은 표면층 제거에 따른 부피효과에 기인하여 감소하였다....
비정질 실리콘 박막 위에 구리용액을 스콘코팅하여 구리이온을 흡착시킨 후 이를 표면 핵생성 site로 이용하는 새로운 저온 결정화 방법에 관하여 연구하였다. 구리 흡착으로 LPCVD비정질 실리콘 박막의 결정화온도를 500˚C까지 낮출 수 있었고 결정화시간도 크게 단축되었다. 530-600˚C에서 어닐링시 구리가 흡착된 비정질 실리콘 막은 나뭇가지 형태의 fractal을 이루며 결정화되었다. 이때 fractal크기는 구리용액의 농도에 따라 30-300μm로 성장하였다. Fractal의 내부는 새 털 모양의 타원형 결정립으로 구성되어 있으며 TEM 에 의한 최종 결정립의 크기는 0.3-0.4μm로 intrinsic 비정질 실리콘 박막을 600˚C에서 어닐링하였을 때화 크기가 비슷하였다. 구리용액의 농도 증가에 따라 핵생성 활성화 에너지와 결정성장 활성화 에너지가 감소하였다. 결과적으로 구리 흡착이 표면에서 우선 핵생성 site를 증가시키고 핵생성 및 fractal 성장에 필요한 활성화 에너지를 모두 낮추어 저온에서도 결정화가 촉진되었음을 알 수 있었다.
비정질 Si1-xGex(X=0, 0.14, 0.34, 0.53)합금박막의 결정화거동을 X-ray diffractometry(XRD)와 투과전자현미경(transmission electron microscopy, TEM)을 이용하여 조사하였다. 비정질 박막은 열산화막(thermal oxide, SiO2)이 입혀진 Si기판위에 MBE(Molecular Beam Epitaxy)를 이용하여 300˚C에서 증착하였으며 각 Ge조성에 해당하는 기편들을 500˚C ~ 625˚C에서 열처리한 다음 XRD를 이용하여 결정화분율과 결정화후 박막의 우선순방위(texture)경향ㅇ르 조사하였다. 또한 TEM을 사용하여 열처리한 박막의 미세구조를 분석하였다. XRD분석결과 박막내의 Ge함량의 증가는 결정화에 대한 열처리시간을 크게 감소시키는 것으로 밝혀졌다. 또한 결정화후 강한(111) 우선방위를 나타내는 Si박막과는 달리 Si1-xGex합금은 (311)우선방위를 가지는 것을 알았으며 이는 비정질 Si박막과 Si1-xGex박막의 결정화기구에 현저한 차이가 있음을 암시한다. TEM관찰에서, 순수한 Si박막은 결정화후 결정립이 타원형이나 수지상(dendrite)형태를 취하고 있었으며 결정립내부에 미페쌍정이나 적층결함들의 많은 결정결함들이 존재하고, 결정립의 성장이 이들 결함을 따라 우선적으로 성장함을 알 수 있었다. 반면에 Si0.47Ge0.53의 경우에서는 결정립모양이 원형에 가까운 동축정(dquiaxed)형상을 하며 결정립내부의 결함밀도도 매우 낮았다. 특히 Si에서 보았던 결정립성장의 방향성은 관찰되지 않았다. 이상의 결과에서 비정질 Si1-xGex(합금박막의 결정화는 Ge이 포함되지 않은 순수한 Si의 twin assisted growth mode에서 Ge 함량의 증가에 따라 ?향성이 없는 random growth mode로 전개되어간다고 결론지을수 있다.
DSC와 XRD를 사용하여 Zr/Si 다층박막의 고상반응에 의한 비정질상과 결정상 생성 및 상전이를 확인하고 이를 유효구동력 개념과 유효생성열 개념 및 phase determining factor(PDF)모델을 이용하여 예측한 결과와 비교하였다. Zr/Si 다층박막은 비정질호 반응이 잘 일어났으며 이는 유효구동력 개념으로 예측한 바와 일치하였다. Zr/Si 계에서 생성되는 최초의 결정상은 ZrSi 였으며 유효생성열과 PDF모델로부터 예측된 최초의 결정상은 PDF 모델의 예측 결과와 일치하였다. Zr/Si 다층박막의 원자조성비가 1대 1일경우와 1대 2일 경우의상전이는 ZrSi→ZrSi2로 되었으며 이러한 상전이 과정은 유효생성열 다이아그램으로 해석되었다. ZrSi의 생성기구는 핵생성이 율속임을 규명하였고 ZrSi와 ZrSi2의 생성에 필요한 활성화에너지는 1.64±0.19eV와 2.28±0.36eV이었다.
Co/Si계에서 고상확산에 의하여 비정질상이 생성되는지의 여부를 유효구동력 개념을 이용하여 예측하였으며 유효생성열 개념 및 PDF모델로부터 결정상의 생성과 상전이를 예측하였다. 한편, DSC와 XRD를 이용하여 Co/Si다층박막에서의 비정질상의 생성여부와 결정상의 생성 및 상전이를 확인하여 모델로부터 예측한 결과와 비교하였다. Co/si계에서는 비정질상이 성장하지 않았으며 이는 유효구동력 개념으로부터 예측된 결과와 일치하였다. Co/Si계에서 생성되는 최초의 결정상은 CoSi였으며 유효생성열과 PDF모델로부터 예측된 최초의 결정상은 각각 CO2Si와 CoSi였다. 따라서 Co/Si계에서 생성되는 최초의 결정상은 구조적인 요소를 고려해 PDF모델의 예측결과와 잘 일치하였다. 증착당시 Co와 Si의 조성비가 2대 1일경우와 1대 2일 경우의 상전이는 각각 CoSi → Co2Si와 CoSi → Co2Si → CoSi → CoSi2의 초기단계의 생성기구는 각각 핵생성이 율속이었으며, 이들의 생성에 필요한 활성화에너지는 각각 1.71, 2.34, 2.79eV이었다.
Fe78B13Si9 비정질 합금의 결정화 거동과 취성 현상을 시차열량기 시험, x-선회절시험 및 투과 전자현미경 관찰을 통해서 조사 연구하였다. 결정화는 두단계의 발열반응으로 진행되었으며, 첫번째 단계에서는 비정질로부터 B.C.C. 구조인 α-(Fe, Si)의 수지상이 생성되었고, 두번째 단계에서는 남아있던 비정질로부터 B.C.T 구조인 Fe2B가 형성되었다. 에닐링 온도에 따른 시편의 파단과 변형율은 비정질 상태인 약 340˚C부터 급긱히 감소하였다.
pMOS소자의 p+게이트 전극으로 다결정실리콘과 비정질실리콘을 사용하여 고온의 열처리 공정에 따른 붕소이온의 침투현상을 high frequency C-V plot, Constant Current Stress Test(CCST), Secondary Ion Mass Spectroscopy(SIMS) 및 Transmission Electron Microscopy(TEM)를 이용하여 비교하였다. C-V plot분석 결과 비정질실리콘 게이트가 다결정실리콘 게이트에 비해 flatband전압의 변화가 작게 나타났으며, 게이트 산화막의 절연파괴 전하밀도에서는 60~80% 정도 향상된 값을 나타내었다. 비정질실리콘 게이트는 증착시 비정질로 형성되는 구조로 인한 얇은 이온주입 깊이와 열처리 공정시 다결정실리콘에 비교하여 크게 성장하는 입자 크기 때문에 붕소이온의 침투 경로가 되는 grain boundary를 감소시켜 붕소이온 확산을 억제한 것으로 생각된다. Electron trapping rate와 flatband 전압 변화와의 관계에 대하여 고찰하였다.