검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 34

        1.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A bending experiment was conducted to verify the structural performance of the U-flange truss hybrid bean using rebars or steel pipes to reinforce the upper compression zone. As a result of evaluating the bending strength of the truss hybrid beam according to the Structural Design Standard (KDS 14 2020: 2022) by introducing the lattice member as a tensile resistance element, the following conclusions were obtained. Considering the lattice element as a tensile resistance element, the nominal bending strength was increased by 38.57 to 47.90 kN.m. As a result of reviewing the experiment as to whether the flexural member has proper ductility, it was found that it is desirable to place appropriate rebars, steel quality plans, and lateral restraints on the upper and lower parts of the hybrid beam to have sufficient ductility ratio.
        4,000원
        2.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the flexural capacity equation of FRP-bar reinforced concrete beams was verified by comparing the experimental results and flexural capacity obtained according to the ACI procedure. And, also the economic feasibility of FRP-bar reinforced concrete beams was analyzed by comparing nominal moment capacity of beams. The results of analysis were as follows, 1) GFRP concrete beams have lower flexural performance than reinforced concrete beams, whereas CFRP concrete beams have similar flexural performance to reinforced concrete beams under the same reinforcement ratio 2) Although the design moment increased as the compressive strength of concrete increased, the flexural performance of GFRP reinforced concrete beams was found to be lower than the reinforced concrete beams for all reinforcement ratios.
        4,000원
        3.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For the practical application of U-flanged Truss Hybrid beams, the flexural capacity of hybrid beams with end reinforcement details using vertical steel plates was verified. The bending test of U-flanged Truss Hybrid beams was performed using the same top chord under the compressive force, but with the thickness of the bottom plate and the amount of tensile reinforcement. The initial stiffness and maximum load of the specimen with tensile reinforcement have a higher value than that of the specimen without tension reinforcement, but the more tensile reinforcement, the greater the load decrease after the maximum load. In the case of the specimen with tensile reinforcement, because the test result value is 76% to 88% when compared with the flexural strength according to Korea Design Code, the safety of the U-flanged Truss Hybrid beam with the same details of the specimens can’t ensure. Therefore, the development of new details is required to ensure that the bottom steel plate and the tensile reinforcement can undergo sufficient tensile deformation.
        4,000원
        4.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        국내 노후교량에 대한 보강은 지속적으로 증가하고 있으며, FRP 보강재에 대한 관심 또한 증가하고 있다. 이 논문에서는 ACI Committee 440를 참고하여, 프리플렉스 거더의 FRP 보강재 적용을 위한 설계식을 제안하였다. 또한, 프리플렉스 거더의 FRP 보강재 적용 특성을 설계예제를 통해 제시하였다. 설계 결과를 통해, FRP 보강재는 사용성 측면에서 우수한 휨보강 효과를 나타내었다.
        4,000원
        5.
        2019.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        AU(A plus U-shaped) composite beam was developed for reducing the story height in the residential buildings, and saving the cosrtuction cost of floor structures. Structural performance and economic feasibility of the composite beam have been sufficiently approved through the structural experiments and the analytical studies. Fire safety for the practical application of the composite beam has also been verified through the fire resistance tests and the heat transfer analyses. In this study 2-points bending tests were performed on the four specimens already tested for fire resistance to evaluate the residual bending strength of AU composite beam after fire accident. The same bending test was performed on the one fresh specimen having the same section and span of the specimens for practically comparative study.
        4,000원
        6.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        U-flanged truss beam is composed of u-shaped upper steel flange, lower steel plate of 8mm or more thickness, and connecting lattice bars welded on the upper and lower sides. The hybrid beam with U-flanged steel truss is made in the construction site through pouring the concrete, and designated as U-flanged truss hybrid beam. In this study the structural experiments on the 4 hybrid beams with the proposed basic shapes were performed, and the flexural capacities from the tests were compared with those from the theoretical approach. The failure modes of each specimen were quite similar. The peak load was reached with the ductile behavior after yielding, and the failure occurred through the concrete crushing. The considerable increasement of deformation was observed up to the concrete crushing. The composite action of concrete and steel member was considered to be reliable from the behavior of specimens. The flexural strength of hybrid beam has been evaluated exactly using the calculation method applied in the boubly reinforced concrete beam. The placement of additional rebars in the bottom instead of upper side is proposed for the efficient design of U-flanged truss hybrid beam.
        4,000원
        7.
        2018.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        단면증대공법은 경제성과 시공상 보편적으로 사용되는 공법으로 우리나라의 철근콘크리트 기둥을 보강하기 위한 공법으로 널리 사용되어 왔다. 이와 관련하여 단면증대된 부재의 성능에 관한 실험적 또는 해석적 연구는 수행된 사례가 있으나, 휨성능과 단면증대 부분의 표면거칠기 범위의 상관관계에 대한 연구는 수행되지 않았다. 따라서, 본 연구에서는 단면증대된 보의 휨성능을 평가하기 위해 표면거칠기의 범위를 변수로 한 단면증대보의 휨실험을 수행하였다. 그 결과는 다음과 같다. (1) 시공에서 사용되는 방법에 따라 거칠기 처리가 된 표면의 거칠기 이력을 분석한 결과 인접 산과 골의 차이는 6mm를 초과하였다. (2) 거칠기 이력이 측정된 거리가 600mm를 초과하연, 거칠기 지표는 일관된 결과를 나타내었다. (3) 표면거칠기처리를 하지 않은 보의 휨성능과 비교할 때, 표면거칠기가 된 보의 휨강성은 25%증가하고, 항복강도는 9%, 최대강도는 6%증가하였다. (4) 모든 시험편은 표면거칠기 처리의 유무에 상관없이 단면해석결과 나타난 항복강도보다 높은 강도를 나타내었다.
        4,000원
        8.
        2018.04 구독 인증기관·개인회원 무료
        In this paper, four point bending tests were carried out to analyse flexural strengthening effect by CFRP (Carbon Fiber Reinforced Polymer) layers for I shape PFRP (Pultruded Fiber Reinforced polymer) flexural member retrofitted with CFRP sheet. Comparing load-displacement relation and sectional stress distribution, the flexural strengthening effect by the number of CFRP layers was founded.
        9.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Numerical analysis was performed to evaluate for reinforcing performance of RC beams in flexure strengthened with Textile Reinforced Mortar (TRM) in this study. New bond strength model for TRM based on the model proposed by Teng et al. was suggested to predict the flexural behavior of RC beams and effective stress in accordance with debonding of TRM. And reduce factor of 0.729 was suggested by investigation of results on the bending test of RC beams strengthened with TRM. Reliability of proposed bond strength model was verified through the comparisons between collected test results and predicted results about the ultimate load of RC beams occurred by debonding of TRM. The ratios of predicted results on the total experimental results, the average and coefficient of variation were 1.00 and 0.094, respectively. Also, nonlinear analysis method proposed by Cho et al. was used to predict the displacement at the cross-section of mid-span for RC beams in flexure strengthened with TRM. At the three state of the RC beams such as occurrence of initial flexural crack in tensile concrete, yield of tensile rebar, and ultimate in accordance with debonding of TRM. Displacements of beams were calculated at the three state and load-displacement curves by predicted results were compared to the collected test results.
        4,000원
        10.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Most of the cultural assets in Korea are wooden structures. Due to the material characteristics of wood, the preservation of traditional wooden structure is impossible by simple maintenance. Damaged member is replaced with new member or completely dissolve and restore them. But member has a cultural value, so that it is impossible to arbitrarily replace each member. Although the preservation treatment method using synthetic resin is emphasized, there is no exact standard for proper reinforcement ratio. This paper is experimental study for reinforcement ratio of wooden flexural member with synthetic resins, Reinforced ratio on section area of flexural member. As a result, synthetic resin reinforcement are selected as experimental variables by proper ratio enhanced flexural capacity of reinforced wooden member than new wooden member.
        4,000원
        11.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Flexural capacity of a Textile Reinforced Mortar(TRM) was investigated by an experimental study. The test program was accomplished on reinforced concrete(RC) slabs consisted of concrete(average compressive strength of 22.23 MPa) and rebar(strength class of SD400). RC slab had 450 mm and 150 mm in size and 2,600 mm in clear span. Strengthening was accomplished by applying carbon-fiber mesh in layers of mortar. Control slab(unstrengthened) and six slabs strengthened with TRM were fabricated to confirm the reinforcing performance in this study. Test variables considered amount of reinforcement and use of anchorage. As a results, it was validated that the flexural capacity of slabs strengthened with TRM increased from 159.9% to 285.2% according to the amount of TRM compared with unstrengthened slab. Experimental results indicated that there are increase in ductility as well as load carrying and deformation capacities when using multiple layers of textile.
        4,000원
        12.
        2012.04 구독 인증기관·개인회원 무료
        The purpose of this study is to analyze flexural strengthening capacity of steel structures using composite materials through the experiment. Until now, A Flexural capacity reinforcing method of steel beams has been used by steel plate appending. The conventional method due to the increase in weight of the reinforcement reduces operation efficiency and welding process cause discomfort which due to the interference of other process. But, the specific gravity of AFRP(Aramid Fiber Reinforced Plastic) strip used as reinforcement in this study is less approximately 20% than steel(SS400) and tensile strength of AFRP is s higher approximately 4 times than steel(SS400). In overseas, CFRP(Carbon Fiber Reinforced Plastic) was used with civil steel structures but, it is difficult to find examples of applying AFRP. In this paper, A experiments were carried out as a variable(development length and thickness of AFRP and CFRP) for flexural strengthening of steel structures.
        13.
        2007.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        탄소섬유관으로 구속된 원형 무근콘크리트 부재는 콘크리트에 효과적인 횡구속을 제공하며, 섬유의 우수한 역학적 성질로 인하여 기존의 철근을 대체할 수 있는 우수한 합성부재이다. 본 논문에서는 탄소섬유관으로 구속된 원형 무근콘크리트 보에 관한 실험 및 해석연구를 실시하였다. 실험연구에서 시험체는 두께 1.5mm(3장), 2.0mm(4장), 2.5mm(5장) 및 3.0mm(6장)를 변수로 하여 실험을 실시하였다. 구속된 콘크리트의 압축강도를 예측하는 식을 이용하여 본 연구에서는 탄소섬유 관으로 구속된 원형 무근 콘크리트 보의 휨성능을 예측하는 실험식을 제안하였다.
        4,000원
        14.
        2006.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        성능보장설계는 교각이 완전한 소성회전성능을 발휘할 때까지 다른 구조요소들과 교각 자체가 취성파괴 되지 않도록 설계하여 교량 전체 시스템의 연성파괴를 보장하기 위한 것으로서, 현행 도로교설계기준에는 명시적으로 규정되어 있지 않으나 대부분의 외국 교량내진설계기준에 채택되어 있다. 성능보장설계에서는 철근콘크리트 교각의 휨 초과강도를 구하고 이를 변환한 전단력을 교각, 기초, 말뚝에 작용하는 횡하중 설계전단력으로 결정하여 교각의 전단설계, 기초설계, 말뚝설계를 수행하도록 규정한다. 이 때 교각의 최대 소성모멘트를 결정하는 방법은 설계기준별로 각기 다른데, 이는 각 국의 재료 시공환경이 다르기 때문이다. 본 연구에서는 국내에서 사용하는 철근의 인장강도 측정치 3,407개와 콘크리트 압축강도 측정치 5,405개의 분석을 통하여 재료 초과강도계수를 제안하였고, 이를 적용하여 휨 초과강도를 결정하는 방법을 제시하였으며, 1,500개의 교각단면에 대한 모멘트-곡률 해석을 수행한 후 통계분석을 통하여 우리나라 실정에 적합한 초과강도계수를 제안하였다.
        4,500원
        15.
        2003.02 구독 인증기관 무료, 개인회원 유료
        Pinching is an important property of reinforced concrete member which characterizes its cyclic behavior. In the present study, numerical studies were performed to investigate the characteristics and mechanisms of pinching behavior and the energy dissipation capacity of flexure-dominated reinforced concrete members. By analyzing existing experimental studies and numerical results, it was found that energy dissipation capacity of a member is directly related to the energy dissipated by re-bars that are plastic material rather than concrete that is brittle, and that it is not related to magnitude ofaxial compressive force applied to the member. Therefore, for a member with specific 없Tangement and amount of re-bars, the energy dissipation capacity remains uniformly regardless of the flexural strength increased by axial force. Pinching that is not related to shear appears due to this phenomenon. The flexural pinching appears conspicuous as the flexural strength increases compared to the uniform energy dissipation capacity. Based on the findings, a practical method for estimating the energy dissipation capacity was developed and verified with existing experiments.
        4,300원
        16.
        2019.05 KCI 등재 서비스 종료(열람 제한)
        U-형 복합보는 공작물 주차장으로 사용하기 위한 목적으로 개발되었다. 복합보를 공작물로 적용할 때, 가장 우선적으로 고려하여야 할 사항은 낮은 층고와 장경간이다. 또한, 철근 콘크리트 및 강구조가 혼합된 구조이기 때문에 일체성을 확보하고, 소요강도 이상의 구조성능을 확보하여야 한다. 본 연구는 철근 콘크리트 슬래브와 U-형 강판으로 이루어진 복합보의 구조성능을 파악하기 위한 것이다. 복합보의 구조성능을 파악하기 위해 주차장용으로 사용되는 일반적인 U-형 복합보를 기준실험체로 설정하고, 기준실험체 대비 하중방향, U-형 복합보의 춤 및 폭을 변화시킨 실험체를 제작하여 실험을 실시하였다. 실험체 지점간 거리는 4.5m 이며, 하중은 순수 휨구간이 1.5m가 되도록 중앙부 2점가력 하였다. 이론값 산정을 위해 U-형 중앙부의 철근, 강재, 콘크리트 등에 변형게이지를 부착하였으며, 하중점 및 측면에 변위계를 설치하였다. 실험결과, 주차장용으로 계획된 기준실험체의 초기 항복강도는 U-형 강재 밑면에서 처음 발생되었다. 항복강도 이후에는 U-형 강재의 항복구간이 점점 확대되면서 최대강도에 도달되었으며, 최대강도 이후에는 RC 슬래브 콘크리트가 압괴되면서 최종파괴 되었다. 춤을 증가시킨 실험체의 구조성능은 기준실험체와 비교하여 강도 및 연성이 매우 향상된 것을 알 수 있다. 또한, 하중방향에 따른 저항 성능은 부가력으로 가력했을 때 휨성능은 저하되나 연성거동은 증가하므로 휨성능 및 연성을 고려한 설계가 이루어져야 할 것으로 판단된다.
        17.
        2019.04 서비스 종료(열람 제한)
        For PHC pile, mechanical connection joints can be essential to connect PHC piles over 15m in length for deep foundation. This study was examined flexural capacity of PHC pile connected with high-performance connection device. To examine flexural capacity of PHC pile, two PHC piles with 5m length were connected using ring-type connecting plate developed recently. Its connection capacity and failure mode were evaluated through four-point flexure test.
        18.
        2018.10 서비스 종료(열람 제한)
        This paper presents the experimental results of flexural behavior of steel beam strengthened with Aramid fiber reinforced polymer plastic (FRP) strips subjected to static bending loading. Two H-beams were fabricated strengthened with aramid strips and one control specimen were also fabricated. Among of strengthened specimens, one specimen was strengthened with partial length of AFRP. From the test, it was observed that maximum increase of 16% was also achieved in bending-load capacity.
        19.
        2017.04 서비스 종료(열람 제한)
        In this study, the 3 point bending tests were conducted to evaluate ductility capacity of splice rebar. As a result, the difference in ductility between RC members embedded in the coupler and general RC members was not significant. For more accurate analysis, 4 point bending tests are considered to be necessary.
        20.
        2016.10 서비스 종료(열람 제한)
        By analyzing the flexural capacity of shotcrete mixture with blast furnace slag and confirmed the suitability as subsea tunnel support of the long-term repeated soaked in chloride-ion slag shotcrete. As a result, the shotcrete mixture with slag is excellent evaluated in terms of flexural capacity compared with existing shotcrete.
        1 2