검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 71

        1.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanoparticles of PbTe are prepared via chemical reaction of the equimolar aqueous solutions of Pb(CH3COO)2 and Te at 120°C. The size of the obtained particles is 100 nm after calcination in a hydrogen atmosphere. Dense specimens for the thermoelectric characterization are produced by spark plasma sintering of prepared powders at 400°C to 500°C under 80 MPa for 5 min. The relative densities of the prepared specimens reach approximately 97% and are identified as cubic based on X-ray diffraction analyses. The thermoelectric properties are evaluated between 100°C and 300°C via electrical conductivity, Seebeck coefficient, and thermal conductivity. Compared with PbTe ingot, the reduction of the thermal conductivities by more than 30% is verified via phonon scattering at the grain boundaries, which thus contributes to the increase in the figure of merit.
        4,000원
        2.
        2018.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In2O3 doped WO3 powders were prepared by a polymer solution route and their NO2 gas sensing properties were analyzed. The synthesized powders showed nano-sized particles with specific surface areas of 6.01~21.5 m2/g and the particle size and shape changed according to the content of In2O3. The gas sensors fabricated with the synthesized powders were tested at operating temperatures of 400~500 oC and 100~500 ppm concentrations of NO2 atmosphere. The particle size and In2O3 content affected on the initial sensor resistance in an air atmosphere. The highest sensitivity (8.57 at 500 oC), which was 1.77 higher than the sensor consisting of the pure WO3 sample, was measured in the 0.5 mol% In2O3 doping sample. In addition, the response time and recovery time were improved by the addition of In2O3.
        4,000원
        3.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of the mixing method on the characteristics of hybrid-structure W powder with nano and micro sizes is investigated. Fine WO3 powders with sizes of ~0.6 μm, prepared by ball milling for 10 h, are mixed with pure W powder with sizes of 12 μm by various mixing process. In the case of simple mixing with ball-milled WO3 and micro sized W powders, WO3 particles are locally present in the form of agglomerates in the surface of large W powders, but in the case of ball milling, a relatively uniform distribution of WO3 particles is exhibited. The microstructural observation reveals that the ball milled WO3 powder, heat-treated at 750oC for 1 h in a hydrogen atmosphere, is fine W particles of ~200 nm or less. The powder mixture prepared by simple mixing and hydrogen reduction exhibits the formation of coarse W particles with agglomeration of the micro sized W powder on the surface. Conversely, in the powder mixture fabricated by ball milling and hydrogen reduction, a uniform distribution of fine W particles forming nano-micro sized hybrid structure is observed.
        4,000원
        4.
        2017.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nano-sized Zinc selenide (ZnSe) powder was successfully synthesized using Zn and Se precursors in a hydrothermal process. Temperature for the synthesis was varied from 95 oC to 180 oC to evaluate its influence on the microstructural properties of the synthetic particles. ZnSe powder thus fabricated was characterized using various analytical tools such as SEM, XRD, TEM and UV-Vis methods. Two types of ZnSe particles, that is, the precipitated particle and the colloidal particles, were identified in the analysis. The precipitated particles were around 100 nm in average size, whereas the average size of the colloidal particles was around 20 nm. The precipitated particles made at 150 oC and 180 oC were found to be a single phase of ZnSe; however, an inhomogeneous phase was obtained at the lower synthesis temperature of 95 oC, suggesting that the temperature for the synthesis should be over 100 oC. The precipitated particles were inactive in the UV-Vis absorption investigation, whereas the colloidal particles showed that absorptions occurred at 380 nm in the UV-Vis spectrum.
        4,000원
        5.
        2017.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        YSZ (Yttria-stabilized zirconia) is a ceramic material that is used for electronic and structural materials due to its excellent mechanical properties and specific electrical characteristics according to the Yttrium addition. Hydrothermal synthesis has several advantages such as fine particle size, uniform crystalline phase, fast reaction time, low process temperature and good dispersion condition. In order to synthesize YSZ nanoparticles with high crystallinity, hydrothermal synthesis was performed at various concentrations of NaOH. The hydrothermal process was held at a low temperature (100 °C), with a short process time (2,4,8 hours); the acidity or alkalinity of solution was controlled in a range of pH 2~12 by addition of NaOH. The optimum condition was found to be pH 12, at which high solubility levels of Y(OH) and Zr(OH) were reported. The synthesized nano powder showed high crystallinity and homogenous composition, and uniform particle size of about 10 nm.
        4,000원
        6.
        2016.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Tin is one of the most promising anode materials for next-generation lithium-ion batteries with a high energy density. However, the commercialization of tin-based anodes is still hindered due to the large volume change (over 260%) upon lithiation/delithiation cycling. To solve the problem, many efforts have been focused on enhancing structural stability of tin particles in electrodes. In this work, we synthesize tin nano-powders with an amorphous carbon layer on the surface and surroundings of the powder by electrical wire explosion in alcohol-based liquid media at room temperature. The morphology and microstructures of the powders are characterized by scanning electron microscopy, Xray diffraction, Raman spectroscopy, and transmission electron microscopy. The electrochemical properties of the powder for use as an anode material for lithium-ion battery are evaluated by cyclic voltammetry and a galvanometric dischargecharge method. It is shown that the carbon-coated tin nano-powders prepared in hexanol media exhibit a high initial charge specific capacity of 902 mAh/g and a high capacity retention of 89% after 50 cycles.
        4,000원
        7.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The sintering mechanisms of nanoscale copper powders have been investigated. A molecular dynamics (MD) simulation with the embedded-atom method (EAM) was employed for these simulations. The dimensional changes for initial-stage sintering such as characteristic lengths, neck growth, and neck angle were calculated to understand the densification behavior of copper nano-powders. Factors affecting sintering such as the temperature, powder size, and crystalline misalignment between adjacent powders have also been studied. These results could provide information of setting the processing cycles and material designs applicable to nano-powders. In addition, it is expected that MD simulation will be a foundation for the multi-scale modeling in sintering process.
        4,000원
        8.
        2015.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nanorod ZnO and spherical nano ZnO for gas sensors were prepared by hydrothermal reaction method and hydrazine method, respectively. The nano-ZnO gas sensors were fabricated by a screen printing method on alumina substrates. The gas sensing properties were investigated for hydrocarbon gas. The effects of Co concentration on the structural and morphological properties of the nano ZnO:Co were investigated by X-ray diffraction and scanning electron microscope (SEM), respectively. XRD patterns revealed that nanorod and spherical ZnO:Co with a wurtzite structure were grown with (1 0 0), (0 0 2), (1 0 1) peaks. The sensitivity of nanorod and spherical ZnO:Co sensors was measured for 5 ppm CH4 and CH3CH2CH3 gas at room temperature by comparing the resistance in air with that in target gases. The highest sensitivity to the CH4 and CH3CH2CH3 gas of spherical nano ZnO:Co sensors was observed at Co 6 wt%. The spherical nano ZnO:Co sensor exhibited a higher sensitivity to hydrocarbon gas than nanorod ZnO.
        4,000원
        10.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A precipitation behavior of nano-oxide particle in Fe-5Y2O3 alloy powders is studied. The mechanically alloyed Fe-5Y2O3 powders are pressed at 750oC for 1h, 850oC for 1h and 1150oC for 1h, respectively. The results of Xray diffraction pattern analysis indicate that the Y2O3 diffraction peak disappear after mechanically alloying process, but Y2O3 and YFe2O4 complex oxide precipitates peak are observed in the powders pressed at 1150oC. The differential scanning calorimetry study results reveal that the formation of precipitates occur at around 1054oC. Based on the transmission electron microscopy analysis result, the oxide particles with a composition of Y-Fe-O are found in the Fe-5Y2O3 alloy powders pressed at 1150oC. It is thus conclude that the mechanically alloyed Fe-5Y2O3 powders have no precipitates and the oxide particles in the powders are formed by a high temperature heat-treatment
        4,000원
        11.
        2014.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A magnetic powder, M-type barium hexaferrite (BaFe12O19), was consolidated with the spark plasma sin-tering process. Three different holding temperatures, 850℃, 875℃ and 900℃ were applied to the spark plasma sinteringprocess with the same holding times, heating rates and compaction pressure of 30 MPa. The relative density was mea-sured simultaneously with spark plasma sintering and the convergent relative density after cooling was found to be pro-portional to the holding temperature. The full relative density was obtained at 900℃ and the total sintering time wasonly 33.3 min, which was much less than the conventional furnace sintering method. The higher holding temperaturealso led to the higher saturation magnetic moment (σs) and the higher coercivity (Hc) in the vibrating sample magne-tometer measurement. The saturation magnetic moment (σs) and the coercivity (Hc) obtained at 900℃ were 56.3 emu/g and541.5 Oe for each.
        3,000원
        12.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, nano-scale copper powders were reduction treated in a hydrogen atmosphere at the relativelyhigh temperature of 350℃ in order to eliminate surface oxide layers, which are the main obstacles for fabricating anano/ultrafine grained bulk parts from the nano-scale powders. The changes in composition and microstructure beforeand after the hydrogen reduction treatment were evaluated by analyzing X-ray diffraction (XRD) line profile patternsusing the convolutional multiple whole profile (CMWP) procedure. In order to confirm the result from the XRD lineprofile analysis, transmitted electron microscope observations were performed on the specimen of the hydrogen reduc-tion treated powders fabricated using a focused ion beam process. A quasi-statically compacted specimen from the nano-scale powders was produced and Vickers micro-hardness was measured to verify the potential of the powders as thebasis for a bulk nano/ultrafine grained material. Although the bonding between particles and the growth in size of theparticles occurred, crystallites retained their nano-scale size evaluated using the XRD results. The hardness results dem-onstrate the usefulness of the powders for a nano/ultrafine grained material, once a good consolidation of powders isachieved.
        4,000원
        13.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, nanocrystalline nickel powders were cold compacted by a dynamic compaction method usinga single-stage gas gun system. A bending test was conducted to measure the bonding strengths of the compacted regionsand microstructures of the specimen were analyzed using a scanning electron microscopy. The specimen was separatedinto two parts by a horizontal crack after compaction. Density test shows that the powder compaction occurred only inthe upper part of the specimen. Brittle fracture was occurred during the bending test of the compact sample. Dispersionof shock energy due to spalling highly affected the bonding status of the nanocrystalline nickel powder.
        4,000원
        14.
        2012.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nano Pd spot-coated active carbon powders were synthesized by a hydrothermal-attachment method (HAA) using PVP capped Pd colloid in a high pressure bomb at , 450 psi, respectively. The PVP capped Pd colloid was synthesized by the precipitation-redispersion method. PVP capped Pd nano particles showed the narrow size distribution and their particle sizes were less than 8nm in diameter. In the case of nano Pd-spot coated active carbon powders, nano-sized Pd particles were adhered in the active carbon powder surface by HAA method. The component of Pd was homogeneously distributed on the active carbon surface.
        4,000원
        15.
        2012.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 분쇄공정에 의한 나노화에 따른 이화학적 특성 변화를 밝히기 위하여 칼슘 나노분말의 이화학적 특성을 칼슘 마이크로분말과 비교 분석하였다. 형태분석 위해 전자현미경을 이용한 결과 칼슘 나노입자의 크기는 약 100 nm였고 칼슘 마이크로 입자의 크기는 100 nm-3 μm 이었으며 칼슘 나노 및 마이크로 입자들의 형태는 육면체 모양의 표면이 날카롭고 거친 것으로 관찰되었다. 입도분석기를 이용해 크기 분포를 분석한 결과 칼슘의 농도가 0.5 mg/mL 일 때, 칼슘 나노 및 마이크로분말의 평균 입자크기는 각각 440.2±73.8 nm, 547.1±105.3 nm이었으며 칼슘의 농도가 1.0 mg/mL 일 때, 칼슘 나노 및 마이크로분말의 평균 입자크기는 각각 388.8±123.2 nm, 1001.9±160.4 nm이었다. 제타전위는 칼슘 나노 분말이 -9.94±1.78 mV이였으며 칼슘 마이크로 분말은 -2.42±2.38 mV으로 시료 두 가지 모두 수용액 상태에서 불안정 하지만 나노 분말이 상대적으로 안정한 것으로 나타났다. 칼슘 나노 및 마이크로 분말의 비표면적은 각각 6.99 m2/g, 4.26 m2/g으로 나노 분말이 더 높게 측정되었다. 겉보기 밀도는 칼슘 나노(0.47±0.01 g/mL)와 마이크로(0.45±0.03 g/mL)분말의 차이가 거의 없었으나, 다짐밀도에서 칼슘 마이크로 분말이 0.97±0.02 g/mL로 칼슘 나노분말 0.81±0.02 g/mL 보다 더 높았다. 안식각은 칼슘 나노분말이 35.40±1.32o로 칼슘 마이크로 분말의 안식각 39.37±2.46o 보다 작아 유동성이 큰 것으로 분석되었다. 본 연구 결과들은 분쇄 공정에 따른 나노화에 의한 칼슘 나노분말을 비롯한 다양한 무기질 나노분말의 이화학적 특성 변화를 밝힐 수 있는 연구로 확대될 수 있는 가능성이 있다.
        4,000원
        16.
        2010.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we successfully synthesized a nano-sized lanthanum-modified lead-titanate (PLT) powder with a perovskite structure using a high-energy mechanochemical process (MCP). In addition, the sintering behavior of synthesized PLT nanopowder was investigated and the sintering temperature that can make the full dense PLT specimen decreased to below by using powder as sintering agent. The pure PLT phase of perovskite structure was formed after MCP was conducted for 4 h and the average size of the particles was approximately 20 nm. After sintered at 1050 and , the relative density of PLT was about 93.84 and 95.78%, respectively. The density of PLT increased with adding and the specimen with the relative densitiy over 96% were fabricated below when 2 wt% of was added.
        4,000원
        17.
        2009.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The calcination and hydrogen-reduction behavior of Fe- and Ni-nitrate have been investigated. /NiO composite powders were prepared by chemical solution mixing of Fe- and Ni-nitrate and calcination at for 2 h. The calcined powders were hydrogen-reduced at for 30 min. The calcination and hydrogen-reduction behavior of Fe- and Ni-nitrate were analyzed by TG in air and hydrogen atmosphere, respectively. TG and XRD analysis for hydrogen-reduced powders revealed that the /NiO phase transformed to phase at the temperature of . The activation energy for the hydrogen reduction, evaluated by Kissinger method, was measured as 83.0 kJ/mol.
        4,000원
        18.
        2008.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum nitride (AlN) powders were prepared by the chemical vapor synthesis (CVS) process in the system. Aluminum chloride () as the starting material was gasified in the heating chamber of . Aluminum chloride gas transported to the furnace in atmosphere at the gas flow rate of 200-400ml/min. For samples synthesized between 700 and , the XRD peaks corresponding to AlN were comparatively sharp and also showed an improvement of crystallinity with increasing the reaction temperature. In additions, the average particle size of the AlN powders decreased from 250 to 40 nm, as the reaction temperature increased.
        4,000원
        19.
        2008.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objectives of this study were the development of a synthesis technique for highly active nanosized ITO powder and the understanding of the reaction mechanisms of the ITO precursors. The precipitation and agglomeration phenomena in ITO and precursors are very sensitive to reaction temperature, pH, and coexisting ion species. Excessive ion and ions had a negative effect an synthesizing highly active powders. However, with a relevant stabilizing treatment the shape and size of ITO and precursors could be controlled and high density sintered products of ITO were obtained. By applying the reprecipitation process (or stabilization technique), highly active ITO and powders were synthesized. Sintering these powders at for 5 hours produced 97% dense ITO bodies.
        4,000원
        20.
        2008.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Al-Ni alloy nano powders have been produced by the electrical explosion of Ni-plated Al wire. The porous nano particles were prepared by leaching for Al-Ni alloy nano powders in 20wt% NaOH aqueous solution. The structural properties of leached porous nano powder were investigated by nitrogen physisorption, X-ray diffraction (XRD) and transmission Microscope (TEM). The surface areas of the leached powders were increased with amounts of AI in alloys. The pore size distributions of these powders were exhibited maxima at range of pore diameters 3.0 to 3.5 nm from the desorption isotherm. The maximum values of those were decreased with amounts of Al in alloys.
        4,000원
        1 2 3 4