음이온 교환막은 수전해 시스템에서 매우 중요한 역할을 하며, 생성된 수소와 산소 기체를 물리적으로 분리할 뿐 만 아니라 전극 사이에서 수산화 이온의 선택적인 전달을 용이하게 한다. 음이온 교환막에 요구되는 특성은 수산화 이온에 대한 높은 전도도와 알칼리 환경에서의 화학적/기계적 안정성 등이 있다. 본 연구에서는 셀룰로오스 나노 크리스탈이 포함된 poly(terphenyl piperidinium) (qPTP/CNC) 복합매질분리막을 제조하였다. 고분자 매질로 사용된 poly(terphenyl piperidinium) 은 super-acid 중합법을 통해 제조되었으며 이온전도성과 알칼라인 내구성이 뛰어난 소재로 알려져 있다. qPTP/CNC 분리막 의 구조는 고분자와 나노 입자 계면의 공극이나 큰 응집체가 없는 조밀하고 균일한 형태를 나타냈다. CNC 나노 입자가 2 wt% 첨가된 qPTP/CNC 분리막은 높은 이온교환용량(1.90 mmol/g)과 낮은 함수율(9.09%) 및 팽윤도(5.56%)를 보였다. 또한, 복합막은 수전해 작동 환경인 50°C 1 M KOH에서 상용 FAA-3-50 분리막에 비해 월등히 낮은 저항과 우수한 알칼라인 내구 성(384시간)을 달성했다. 이러한 결과는 친수성 첨가제인 CNC가 음이온 교환막의 이온 전도 특성과 알칼라인 내구성 향상에 기여할 수 있음을 보고하였다.
Transition-metal phosphides (TMPs), a promising anode material for lithium-ion batteries (LIBs), are limited in application because of its serious volume effect in the cycle. In this work, a simple electrospinning strategy was proposed to restrict the grain size of CoP nanocrystals by nano-confined effect of carbon nanofibers with ligands. The addition of ligands not only could realize the uniform dispersion of CoP nanocrystals, but also strengthen the bond between the metals and carbon nanofibers. As a result, the CoP/CNF composite exhibits excellent lithium storage performance, and its reversible specific capacity could reach 1016.4 mAh g− 1 after 200 cycles at a current density of 200 mA g− 1. The research is anticipated to provide a new idea for the preparation of anode materials for lithium ion batteries.
Lead sulfide ( PbS ) nanocrystals anchored on nitrogen-doped multiwalled carbon nanotubes ( CNx ) have been synthesized employing an environmentally friendly and inexpensive wet chemistry process. CNx∕PbS composites have been examined by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. Theorical ab initio calculations have been developed to determine the samples structural, morphological and optical properties to explain the experimental evidences. The PbS nanoparticles exhibit of 4 nm to 27 nm particle size with a face-centered cubic crystal structure and are homogeneously distributed along the carbon nanotubes. The nitrogen-doped CNTs acts as binding sites for the PbS clusters as ab initio theoretical study suggests.
Metal halide perovskite nanocrystals, due to their high absorption coefficient, high diffusion length, and photoluminescence quantum yield, have received significant attention in the fields of optoelectronic applications such as highly efficient photovoltaic cells and narrow-line-width light emitting diodes. Their energy band structure can be controlled via chemical exchange of the halide anion or monovalent cations in the perovskite nanocrystals. Recently, it has been demonstrated that chemical exfoliation of the halide perovskite crystal structure can be achieved by addition of organic ligands such as noctylamine during the synthetic process. In this study, we systematically investigated the quantum confinement effect of methylammonium lead bromide (CH3NH3PbBr3, MAPbBr3) nanocrystals by precise control of the crystal thickness via chemical exfoliation using n-octylammonium bromide (OABr). We found that the crystalline thickness consistently decreases with increasing amounts of OABr, which has a larger ionic radius than that of CH3NH3 + ions. In particular, a significant quantum confinement effect is observed when the amounts of OABr are higher than 60 %, which exhibited a blue-shifted PL emission (~ 100 nm) as well as an increase of energy bandgap (~ 1.53 eV).
In this work, α-Fe2O3 nanocrystals are synthesized by co-precipitation method and used as adsorbent to remove Cr6+, Cd2+, and Pb2+ from wastewater at room temperature. The prepared sample is evaluated by XRD, BET surface area, and FESEM for structural and morphological characteristics. XRD patterns confirm the formation of a pure hematite structure of average particle size of ~ 40 nm, which is further supported by the FESEM images of the nanocrystals. The nanocrystals are found to have BET specific surface area of ~ 39.18 m2 g−1. Adsorption experiments are carried out for the different values of pH of the solutions, contact time, and initial concentration of metal ions. High efficiency Cr6+, Cd2+, and Pb2+ removal occur at pH 3, 7, and 5.5, respectively. Equilibrium study reveals that the heavy metal ion adsorption of the α-Fe2O3 nanocrystals followed Langmuir and Freundlich isotherm models. The Cr6+, Cd2+, and Pb2+ adsorption equilibrium data are best fitted to the Langmuir model. The maximum adsorption capacities of α-Fe2O3 nanocrystals related to Cr6+, Cd2+, and Pb2+ are found to be 15.15, 11.63, and 20 mg g−1, respectively. These results clearly suggest that the synthesized α-Fe2O3 nanocrystals can be considered as potential nano-adsorbents for future environmental and health related applications.
Tin oxide (SnO2) nanocrystals are synthesized by a thermal evaporation method using a mixture of SnO2 and Mg powders. The synthesis process is performed in air at atmospheric pressure, which makes the process very simple. Nanocrystals with a belt shape start to form at 900 oC lower than the melting point of SnO2. As the synthesis temperature increases to 1,100 oC, the quantity of nanocrystals increases. The size of the nanocrystals did not change with increasing temperature. When SnO2 powder without Mg powder is used as the source material, no nanocrystals are synthesized even at 1,100 oC, indicating that Mg plays an important role in the formation of the SnO2 nanocrystals at temperatures as low as 900 oC. X-ray diffraction analysis shows that the SnO2 nanocrystals have a rutile crystal structure. The belt-shaped SnO2 nanocrystals have a width of 300~800 nm, a thickness of 50 nm, and a length of several tens of micrometers. A strong blue emission peak centered at 410 nm is observed in the cathodoluminescence spectra of the belt-shaped SnO2 nanocrystals.
Zinc oxide(ZnO) micro/nanocrystals are grown via thermal evaporation of ZnO powder mixed with Mn powder, which is used as a reducing agent. The ZnO/Mn powder mixture produces ZnO micro/nanocrystals with diverse morphologies such as rods, wires, belts, and spherical shapes. Rod-shaped ZnO micro/nanocrystals, which have an average diameter of 360 nm and an average length of about 12 μm, are fabricated at a temperature as low as 800 °C due to the reducibility of Mn. Wireand belt-like ZnO micro/nanocrystals with length of 3 μm are formed at 900 °C and 1,000 °C. When the growth temperature is 1,100 °C, spherical shaped ZnO crystals having a diameter of 150 nm are synthesized. X-ray diffraction patterns reveal that ZnO had hexagonal wurtzite crystal structure. A strong ultraviolet emission peak and a weak visible emission band are observed in the cathodoluminescence spectra of the rod- and wire-shaped ZnO crystals, while visible emission is detected for the spherical shaped ZnO crystals.
Lignocellulosic materials such as agricultural residues have been identified as potential sustainable sources that can replace petroleum-based polymers. This study focused on the conversion of lignin extracted from bagasse to carbon fiber (CF) and cellulose nanocrystal (CNC). The highest extraction of lignin yield was achieved at 100 °C using 10% NaOH for 12 h. Carbon fibers were obtained by electro-spinning of bagasse lignin blended with polyvinyl alcohol (PVA) (11 wt/v %) followed by thermo-stabilization (250 °C) in an oxidizing atmosphere and further carbonization in an inert atmosphere (850 °C). Conventional hydrolysis process was used to extract cellulose nanocrystal from bagasse pulp. Morphological (scanning electron microscopy, SEM), spectral (Fourier transform infrared, FTIR) spectroscopy, elemental analysis, thermal characterization and surface area measurements have been carried out. Figures originated by SEM showed that CF ranges from 145 to 204 nm, while stabilized bagasse cellulose nanocrystal (SCNC) appeared as rod-shape like structure in the range of length 600–800 nm and diameter 5.33–19 μm. Characterization results revealed that CF exhibits microporous structure, while bagasse lignin and SCNC display mesoporous structure. In addition, the results proved that SCNC exhibits a percentage removal 71.56% for methylene blue dye in an aqueous solution.
ZnO micro/nanocrystals with different morphologies were synthesized by thermal evaporation of various zinc source materials in an air atmosphere. Zinc acetate, zinc carbonate and zinc iodide were used as the source materials. No catalysts or substrates were used in the synthesis of the ZnO crystals. The scanning electron microscope(SEM) image showed that the morphology of ZnO crystals was strongly dependent on the source materials, which suggests that source material is one of the key factors in controlling the morphology of the obtained ZnO crystals. Tetrapods, nanogranular shaped crystals, spherical particles and crayon-shaped crystals were obtained using different source materials. The X-ray diffraction(XRD) pattern revealed that the all the ZnO crystals had hexagonal wurtzite crystalline structures. An ultraviolet emission was observed in the cathodoluminescence spectrum of the ZnO crystals prepared via thermal evaporation of Zn powder. However, a strong green emission centered at around 500 nm was observed in the cathodoluminescence spectra of the ZnO crystals prepared using zinc salts as the source materials.
The pace of development of Pickering emulsions stabilized by food-derived particles such as starches and proteins has recently soared to replace conventional emulsions using a large amount of chemical emulsifiers. The protein-stabilized emulsions cannot be transported to small intestine due to its degradation in stomach condition. The starch-stabilized emulsions have a low colloidal stability because of their large size, so they cannot be applied to beverages. In this study, to increase the colloidal stability of starch-stabilized emulsions, starch nanocrystals (SNC) obtained by sulfuric acid hydrolysis were used to stabilize emulsions, and ultrasonic treatment was added to further increase the colloidal stability. An oil-soluble dye (Nile Red) was used to visualize changes in the lipid phase during digestion. Lipid-labeled Pickering emulsions were passed through a simulated gastrointestinal tract consisting of mouth, stomach, and intestinal phases, and changes in lipid location and morphology were monitored using confocal laser scanning microscopy. The lipid droplets were slightly enlarged in the mouth condition, highly flocculated in the gastric condition, and completely digested in the small intestine condition. Our results show that the additional ultrasonication to the SNC-stabilized emulsions resulted in enhanced colloidal stability, and the SNC-stabilized emulsions produced by the above process were stable in the mouth and stomach conditions and completely digested in the small intestine condition. So, the SNC-stabilized emulsions produced through this study could be effectively applied to functional beverages as a chemical emulsifier-free delivery systems.
Much attention has been paid to thermally conductive materials for efficient heat dissipation of electronic devices to maintain their functionality and to support lifetime span. Hexagonal boron nitride (h-BN), which has a high thermal conductivity, is one of the most suitable materials for thermally conductive composites. In this study, we synthesize h-BN nanocrystals by pyrolysis of cost-effective precursors, boric acid, and melamine. Through pyrolysis at 900oC and subsequent annealing at 1500oC, h-BN nanoparticles with diameters of ~80 nm are synthesized. We demonstrate that the addition of small amounts of Eu-containing salts during the preparation of melamine borate precursors significantly enhanced the crystallinity of h-BN. In particular, addition of Eu assists the growth of h-BN nanoplatelets with diameters up to ~200 nm. Polymer composites containing both spherical Al2O3 (70 vol%) and Eu-doped h-BN nanoparticles (4 vol%) show an enhanced thermal conductivity (λ ~ 1.72W/mK), which is larger than the thermal conductivity of polymer composites containing spherical Al2O3 (70 vol%) as the sole fillers (λ ~ 1.48W/mK).
In the present work, we propose a molecule (C14H14) that can be used as a building block of hexagonal diamond-type crystals and nanocrystals, including wurtzite structures. This molecule and its combined blocks are similar to diamondoid molecules that are used as building blocks of cubic diamond crystals and nanocrystals. The hexagonal part of this molecule is included in the C12 central part of this molecule. This part can be repeated to increase the ratio of hexagonal to cubic diamond and other structures. The calculated energy gap of these molecules (called hereafter wurtzoids) shows the expected trend of gaps that are less than that of cubic diamondoid structures. The calculated binding energy per atom shows that wurtzoids are tighter structures than diamondoids. Distribution of angles and bonds manifest the main differences between hexagonal and cubic diamond-type structures. Charge transfer, infrared, nuclear magnetic resonance and ultraviolet-visible spectra are investigated to identify the main spectroscopic differences between hexagonal and cubic structures at the molecular and nanoscale. Natural bond orbital population analysis shows that the bonding of the present wurtzoids and diamondoids differs from ideal sp3 bonding. The bonding for carbon valence orbitals is in the range (2s0.982p3.213p0.02)-(2s0.942p3.313p0.02) for wurtzoid and (2s0.932p3.293p0.01)-(2s0.992p3.443p0.01) for diamantane.
As a renewable nanomaterial, cellulose nanocrystal (CNC) isolated from wood grants excellent mechanical properties in developing high performance nanocomposites. This study was undertaken to compare the reinforcing efficiency of two different CNCs, i.e., cellulose nanowhiskers (CNWs) and cellulose nanofibrils (CNFs) from hardwood bleached kraft pulp (HW-BKP) as reinforcing agent in polyvinyl alcohol (PVA)-based nanocomposite. The CNWs were isolated by sulfuric acid hydrolysis while the CNFs were isolated by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation. Based on measurements using transmission electron microscopy, the individual CNWs were about 6.96±0.87 nm wide and 178±55 nm long, while CNFs were 7.07±0.99 nm wide. The incorporation of CNWs and CNFs into the PVA matrix at 5% and 1% levels, respectively, resulted in the maximum tensile strength, indicating different efficiencies of these CNCs in the nanocomposites. Therefore, these results suggest a relationship between the reinforcing potential of CNCs and their physical characteristics, such as their morphology, dimensions, and aspect ratio.
We report the effect of the chain length of carboxylic acid on the photoluminescence(PL) of /ZnS nanocrystals. /ZnS nanocrystals with emission wavelength ranging from 566 nm through 583 nm were synthesized with zinc acetate and carboxylic acids with various chain length. In this study, /ZnS nanocrystals prepared using long chain carboxylic acid showed more improved PL intensity. The origin of strong photoluminescence of the nanocrystals prepared with zinc acetate and long chain carboxylic acid was ascribed to improved size distribution due to strong reactivity between long chain carboxylic acid and zinc acetate.
ZnO/ZnS core/shell nanocrystals (~5-7 nm in diameter) with a size close to the quantum confinement regime were successfully synthesized using polyol and thermolysis. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) analyses reveal that they exist in a highly crystalline wurtzite structure. The ZnO/ZnS nanocrystals show significantly enhanced UV-light emission (~384 nm) due to effective surface passivation of the ZnO core, whereas the emission of green light (~550 nm) was almost negligible. They also showed slight photoluminescence (PL) red-shift, which is possibly due to further growth of the ZnO core and/or the extension of the electron wave function to the shell. The ZnO/ZnS core/shell nanocrystals demonstrate strong potential for use as low-cost UV-light emitting devices.
This study investigated a mechanism for controlling the shape of Cu nanocrystals fabricated using the polyol process, which considers the thermodynamic transition from a facetted surface to a rough surface and the growth mechanisms of nanocrystals with facetted or rough surfaces. The facetted surfaces were stable at relatively low temperatures due to the low entropy of perfectly facetted surfaces. Nanocrystals fabricated using a coordinative surfactant stabilized the facetted surface at a higher temperature than those fabricated using a non-coordinative surfactant. The growth rate of the surface under a given driving force was dependent on the surface structure, i.e., facetted or rough, and the growth of a facetted surface was a thermally activated process. Surface twins decreased the activation energy for growth of the facetted surface and resulted in rod- or wire-shaped nanocrystals
천연 광물소재를 양이온 치환하여 환경개선재로 응용되고 있는 Lumilite®의 원료 중 원광의 광물학적 특징을 분석하고 구성광물의 나노결정의 발달특징을 관찰하였다. 이를 위하여 편광현미경에 의한 조직관찰, XRD, SEM, FTIR, XRF 분석을 실시하였다. 구성 광물상은 클리높틸로라이트, 일라이트, 석영, 알바이트 사장석이며, 본 시료는 미립질의 치밀한 조직을 가지는 것이 특징이다. 나노결정의 크기는 70~100 nm 범위가 흔하면, 비교적 등립질 내지 반등립질로 구성된다. 나노결정들의 단면은 아원형 내지 완만한 각형이며, 나노결정의 표면에는 수 nm 크기의 원형돌기가 거의 균질하게 분포한다. 전시료의 화학조성은 SiO2 74.22~75.65 wt.%, Al2O3 13.25~13.72 wt., CaO 4.23~5.15 wt.%이며, 그 외 주성분과 수분은 미량으로 함유된다. 원료물질은 결정학적으로 500℃까지는 안정한 상을 유지하나, 700℃에서는 구조가 거의 파괴된다. Lumilite®가 흡착능력이 뛰어나고 높은 양이온치환능력을 가지는 것은 나노결정들이 잘 발달하고, 이들 사이에는 다양한 미세공극이 잘 발달하기 때문인 것으로 보인다.