검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 555

        101.
        2014.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Titanium and its alloys are useful for implant materials. In this study, porous Ti-Nb-Zr biomaterials were successfully synthesized by powder metallurgy using a NH4HCO3 as space holder and TiH2 as foaming agent. Consolidation of powder was accomplished by spark plasma sintering process(SPS) at 850˚C under 30 MPa condition. The effect of high energy milling time on pore size and distribution in Ti-Nb-Zr alloys with space holder(NH4HCO3) was investigated by optical microscope(OM), scanning electron microscope(SEM) & energy dispersive spectroscopy(EDS) and X-ray diffraction(XRD). Microstructure observation revealed that, a lot of pores were uniformly distributed in the Ti-Nb-Zr alloys as size of about 30-100μm using mixed powder and milled powders. In addition, the pore ratio was found to be about 5-20% by image analysis, using an image analyzer(Image Pro Plus). Furthermore, the physical properties of specimens were improved with increasing milling time as results of hardness, relative density, compressive strength and Young's modulus. Particularly Young's modulus of the sintered alloy using 4h milled powder reached 52 GPa which is similar to bone elastic modulus.
        4,000원
        102.
        2014.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties, including high strength, high hardness, excellent ductility and toughness. In this study, nanopowders of Al2O3, MgO and TiO2 were prepared as starting materials by high energy ball milling for the simultaneous synthesis and sintering of the nanostructured compound Mg4Al2Ti9O25 by high-frequency induction heating process. The highly dense nanostructured Mg4Al2Ti9O25 compound was produced within one minute by the simultaneous application of 80MPa pressure and induced current. The sintering behavior, grain size and mechanical properties of the Mg4Al2Ti9O25 compound were evaluated.
        4,000원
        103.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the densification behavior of rhenium alloys including W-25 wt.%Re and Re-2W-1Ta (pure Re) during sintering. The dilatometry experiments were carried out to obtain the in-situ shrinkage in H2 atmo-sphere. The measured data was analyzed through shrinkage, strain rate and relative density, and then symmetricallytreated to construct the linearized form of master sintering curve (MSC) and MSC as a well-known and straightforwardapproach to describe the densification behavior during sintering. The densification behaviors for each material were ana-lyzed in many respects including apparent activation energy, densification parameter, and densification ratio. MSC witha minimal set of preliminary experiments can make the densification behavior to be characterized and predicted as wellas provide guideline to sinter cycle design. Considering the results of linearized form and MSC, it was confirmed thatthe W-25 wt.%Re compared to Pure Re is more easily densified at the relatively low temperature.
        4,000원
        104.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        During sintering of Ni-electrode multi-layer ceramic capacitors (MLCCs), the Ni electrode often becomes discontinuous because of its lower sintering temperature relative to that of BaTiO3. In an attempt to retard the sintering of Ni, we introduced passivation of the Ni powder. To find the optimal passivation conditions, a thermogravimetric analysis (TGA) was conducted in air. After passivation at 250oC for 11 h in air, a nickel oxide shell with a thickness of 4- 5 nm was formed on nickel nanoparticles of 180 nm size. As anticipated, densification of the compacts of the passivated Ni/NiO core-shell powder was retarded: the starting temperature of densification increased from ~400oC to ~600oC in a 97N2-3H2 (vol %) atmosphere. Grain growth was also retarded during sintering at temperatures of 750 and 1000oC. When the sintering atmosphere was changed from wet 99.93N2-0.07H2 to wet 99.98N2-0.02H2, the average grain size decreased at the same sintering temperature. The conductivity of the passivated powder sample sintered at 1150oC for 8 h in wet 99.93N2-0.07H2 was measured to be 3.9 × 104 S/cm, which is comparable with that, 4.6 × 104 S/ cm, of the Ni powder compact without passivation. These results demonstrate that passivation of Ni is a viable means of retarding sintering of a Ni electrode and hence improving its continuity in the fabrication of BaTiO3-based multi-layer ceramic capacitors.
        4,000원
        105.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Microstructural and mechanical properties of Ni-YSZ fabricated using SPS processing have been investigated at various sintering temperatures. Our study shows samples to be applied as a SOFC anode have the proper porosity of 40% and high hardness when processed at 1100ºC. These results are comparable to the values obtained at 100- 200ºC higher sintering temperature reported by others. This result is important because when the fabrication processes are performed above 1100ºC, the mechanical property starts to decrease drastically. This is caused by the fast grain coarsening at the higher temperature, which initiates a mismatch between thermal expansion coefficients of Ni and YSZ and induces cracks as well.
        4,000원
        106.
        2013.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe-TiC composite was fabricated from Fe and TiC powders by high-energy milling and subsequent spark- plasma sintering. The microstructure, particle size and phase of Fe-TiC composite powders were investigated by field emission scanning electron microscopy and X-ray diffraction to evaluate the effect of milling conditions on the size and distribution of TiC particles in Fe matrix. TiC particle size decreased with milling time. The average TiC particle size of 38 nm was obtained after 60 minutes of milling at 1000 rpm. Prepared Fe-TiC powder mixture was densified by spark- plasma sintering. Sintered Fe-TiC compacts showed a relative density of 91.7~96.2%. The average TiC particle size of 150 nm was observed from the FE-SEM image. The microstructure, densification behavior, Vickers hardness, and frac- ture toughness of Fe-TiC sintered compact were investigated.
        4,000원
        107.
        2013.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Spherical Ti-6Al-4V powders in the size range of 250 and 300 µm were uniformly doped with nano-sized hydroxyapatite (HAp) powders by Spex milling process. A single pulse of 0.75-2.0 kJ/0.7 g of the Ti-6Al-4V powders doped with HAp from 300 mF capacitor was applied to produce fully porous and porous-surfaced Ti-6Al-4V implant compact by electro-discharge-sintering (EDS). The solid core was automatically formed in the center of the compact after discharge and porous layer consisted of particles connected in three dimensions by necks. The solid core increased with an increase in input energy. The compressive yield strength was in a range of 41 to 215 MPa and significantly depended on input energy. X-ray photoelectron spectroscopy and energy dispersive x-ray spectrometer were used to investigate the surface characteristics of the Ti-6Al-4V compact. Ti and O were the main constituents, with smaller amount of Ca and P. It was thus concluded that the porous-surfaced Ti-6Al-4V implant compacts doped with HAp can be efficiently produced by manipulating the milling and electro-discharge-sintering processes.
        4,000원
        108.
        2013.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe-based oxide dispersion strengthened (ODS) powders were produced by high energy ball milling, fol- lowed by spark plasma sintering (SPS) for consolidation. The mixed powders of 84Fe-14Cr-2Y2O3 (wt%) were mechanically milled for 10 and 90 mins, and then consolidated at different temperatures (900~1100o C). Mechani- cally-Alloyed (MAed) particles were examined by means of cross-sectional images using scanning electron micros- copy (SEM). Both mechanical alloying and sintering behavior was investigated by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HR-TEM). To confirm the thermal behavior of Y2O3, a replica method was applied after the SPS process. From the SEM observation, MAed powders milled for 10 min showed a lamella structure consisting of rich regions of Fe and Cr, while both regions were fully alloyed after 90 min. The results of sintering behavior clearly indicate that as the SPS temperature increased, micro-sized defects decreased and the den- sity of consolidated ODS alloys increased. TEM images revealed that precipitates smaller than 50 nm consisted of YCrO3.
        4,000원
        109.
        2013.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To improve coating ability and the life of the coating, Ti based composite materials with hydroxyapatite(HA) should be developed. The raw materials of Ti-26wt%, Nb-1wt%, and Si with 10wt% HA were mixed for 24 h by a mixing machine and milled for 1 h to 6 h by planetary mechanical ball milling. Ti-26%Nb-1%Si-(10%HA) composites, composed of nontoxic elements, were fabricated successfully by spark plasma sintering(SPS) at 1000˚C under 70MPa. The relative density of the sintered Ti-Nb-Si-HA composites using the 24 h mixed powder, and the 6 h milled powder, was 91% and 97 %, respectively. The effects of HA contents and milling time on microstructure and mechanical properties were investigated by SEM and hardness tester, respectively. The Vickers hardness of the composites increased with increasing milling time and higher HA content. The Young's modulus of the sintered Ti-26%Nb-1%Si-10%HA composite using the 6 h-milled powder was 55.6 GPa, as obtained by compression test. Corrosion resistance of the Ti-26wt%Nb-1wt%Si composite was increased by milling and by the addition of 10wt%HA. Wear resistance was improved with increasing milling time. Biocompatibility of the Ti-Nb-Si alloys was improved by the addition of HA.
        4,000원
        110.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High-coercive (Nd,Dy)-Fe-B magnets were fabricated via dysprosium coating on Nd-Fe-B powder. The sputtering coating process of Nd–Fe–B powder yielded samples with densities greater than 98%. (Nd,Dy)2Fe14B phases may have effectively penetrated into the boundaries between neighboring Nd2Fe14B grains during the sputtering coating process, thereby forming a (Nd,Dy)2Fe14B phase at the grain boundary. The maximum thickness of the Dy shell was approximately 70 nm. The maximum coercivity of the Dy sputter coated samples(sintered samples) increased from 1162.42 to 2020.70 kA/m. The microstructures of the (Nd,Dy)2Fe14B phases were effectively controlled, resulting in mproved magnetic properties. The increase in coercivity of the Nd-Fe-B sintered magnet is discussed from a micro- structural point of view.
        4,000원
        111.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present work, 6061 Al-B4C sintered composites containing different B4C contents were fabricated and their characteristic were investigated as a function of sintering temperature. For this, composite powders and their compacts with B4C various contents from 0 to 40 wt.% were fabricated using a planetary ball milling equipment and cold isostatic pressing, respectively, and then they were sintered in the temperature ranges of 580 to 660o C. Above sin- tering temperature of 640o C, real density was decreased due to the occurrence of sweat phenomena. In addition, it was realized that sinterability of 6061Al-B4C composite material was lowered with increasing B4C content, resulting in the decrease in its real density and at the same time in the increment of porosity.
        4,000원
        112.
        2013.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Powder metallurgy applied rapid heating to sintering starting year 1900. Since 1970 the study has intensified. Now rapid sintering concepts embrace a spectrum of options ranging from dunk cycles to microwave, induction, exothermic, electric field, and spark approaches. Most of the efforts are targeting reduced microstructure coarsening during sintering, although reduced material decomposition is another common goal. The efforts are impressive for simple shapes and success metrics such a small grain size after densification. Several barriers need to be removed prior to application in powder metallurgy commercial sintering. Rapid heating research needs to focus on significant property gains, accurate product dimensions, and lower costs. So far each property gain obtained with rapid heating is matched by traditional sintering and composition changes. Several examples are cited to show the goals for the next round of innovations.
        4,800원
        113.
        2013.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The quartz glasses were prepared by fumed silica powders sintering method at , , in air and the effect of sintering temperature on their properties were investigated. The X-ray diffraction pattern, the OH concentration, the light transmittance, the apparent porosity and the density were analyzed. The transparent quartz glass were obtained above . The OH-group and macroscopic pores were removed above and highest density and light transmittance were obtained at .
        3,000원
        114.
        2013.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The key concept of nanopowder agglomerate sintering (NAS) is to enhance material transport by controlling the powder interface volume of nanopowder agglomerates. Using this concept, we developed a new approach to full density processing for the fabrication of pure iron nanomaterial using Fe nanopowder agglomerates from oxide powders. Full density processing of pure iron nanopowders was introduced in which the powder interface volume is manipulated in order to control the densification process and its corresponding microstructures. The full density sintering behavior of Fe nanopowders optimally size-controlled by wet-milling treatment was discussed in terms of densification process and microstructures.
        4,000원
        115.
        2013.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The Ti-6Al-4V extra low interstitial (ELI) alloy has been widely used as an orthopedic implant material because of its excellent mechanical properties and biocompatibility. However, it still has many problems, including a high elastic modulus and toxicity of the Al and V elements. Therefore, non-toxic biomaterials with a low elastic modulus need to be developed. A high energy mechanical milling (HEMM) process is introduced to improve the effect of sintering. Rapid sintering of spark plasma sintering (SPS) under pressure was used to make an ultra fine grain of Ti-25 wt.%Nb-7 wt.%Zr-10 wt.%Mo-(10 wt.%CPP) composites with bio-attractive elements for increasing strength. These composites were fabricated by SPS at 1000˚C at 60 MPa using HEMM powders. During the sintering process, CaTiO3, TixOy, and CaO were formed because of the reaction between Ti and CPP. The effects of CPP content on the physical and mechanical properties of the sintered Ti-Nb-Zr-Mo-CPP composites were investigated. The biocompatibility and corrosion resistance of the Ti-Nb-Zr-Mo alloys were improved by the addition of CPP.
        4,000원
        116.
        2013.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A bulk metallic glass-forming alloy, metallic glass powders was used for good commercial availability and good formability in supercooled liquid region. In this study, the Ni-based metallic glass was synthesized using by high pressure gas atomized metallic glass powders. In order to create a bulk metallic glass sample, the metallic glass powders with ball-milled Ni-based amorphous powder with 40%vol brass powder and Cu powder for 20 hours. The composite specimens were prepared by Spark Plasma Sintering for the precursor. The SPS was performed at supercooled liquid region of Ni-based metallic glass. The amorphous structure of the final sample was characterized by SEM, X-ray diffraction and DSC analysis.
        3,000원
        117.
        2012.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effects of clay, aluminum hydroxide, and carbon powder on the sintering of a Si/SiC mixture from photovoltaic silicon-wafer production were investigated. Sintering temperature was fixed at 1,350˚C and the sintered bodies were characterized by SEM and XRD to analyze the microstructure and to measure the apparent porosity, absorptivity, and apparent density. The XRD peak intensity of SiC in the sintered body was increased by adding 5% carbon to the Si/SiC mixture. From this result, it is confirmed that Si in the Si/SiC mixture had reacted with the added carbon. Addition of aluminum hydroxide decreased the cristobalite phase and increased the stable mullite phase. The measurement of the physical properties indicates that adding carbon to the Si/SiC mixture enables us to obtain a dense sintered body that has high apparent density and low absorptivity. The sintered body produced from the Si/SiC mixture with aluminum hydroxide and carbon powder as sintering additives can be applied to diesel particulate filters or to heat storage materials, etc., since it possesses high thermal conductivity, and anticorrosion and antioxidation properties.
        4,000원
        118.
        2012.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We have examined the co-doping effects of 1/2mol% NiO and 1/4mol% Cr2O3 (Ni:Cr=1:1) on the reaction,microstructure, and electrical properties, such as the bulk defects and the grain boundary properties, of ZnO-Bi2O3-Sb2O3 (ZBS;Sb/Bi=0.5, 1.0, and 2.0) varistors. The sintering and electrical properties of Ni,Cr-doped ZBS, ZBS(NiCr) varistors werecontrolled using the Sb/Bi ratio. Pyrochlore (Zn2Bi3Sb3O14), α-spinel (Zn7Sb2O12), and δ-Bi2O3 were detected for all ofcompositions. For the sample with Sb/Bi=1.0, the Pyrochlore was decomposed and promoted densification at lowertemperature by Ni rather than by Cr. A homogeneous microstructure was obtained for all of the samples affected by α-spinel.The varistor characteristics were not dramatically improved (non-linear coefficient, α=5~24), and seemed to formZni..(0.17eV) and Vo.(0.33eV) as dominant defects. From impedance and modulus spectroscopy, the grain boundaries werefound to have been divided into two types, i.e., one is tentatively assigned to ZnO/Bi2O3 (Ni,Cr)/ZnO (0.98eV) and the otheris assigned to a ZnO/ZnO (~1.5eV) homojunction.
        4,000원
        119.
        2012.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study we aimed to examine the co-doping effects of 1/6mol% Co3O4 and 1/4mol% Cr2O3 (Co:Cr=1:1)on the reaction, microstructure, and electrical properties, such as the bulk defects and the grain boundary properties, of ZnO-Bi2O3-Sb2O3 (ZBS; Sb/Bi=0.5, 1.0, and 2.0) varistors. The sintering and electrical properties of Co,Cr-doped ZBS, ZBS(CoCr)varistors were controlled using the Sb/Bi ratio. Pyrochlore (Zn2Bi3Sb3O14), α-spinel (Zn7Sb2O12), and δ-Bi2O3 were formed inall systems. Pyrochlore was decomposed and promoted densification at lower temperature on heating in Sb/Bi=1.0 by Cr ratherthan Co. A more homogeneous microstructure was obtained in all systems affected by α-spinel. In ZBS(CoCr), the varistorcharacteristics were improved (non-linear coefficient, α=20~63), and seemed to form Zni..(0.20eV) and Vo.(0.33eV) asdominant defects. From impedance and modulus spectroscopy, the grain boundaries were found to be composed of anelectrically single barrier (0.94~1.1eV) that is, however, somewhat sensitive to ambient oxygen with temperature. The phasedevelopment, densification, and microstructure were controlled by Cr rather than by Co but the electrical and grain boundaryproperties were controlled by Co rather than by Cr.
        4,000원
        120.
        2012.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We aimed to examine the co-doping effects of 1/6mol% Mn3O4 and 1/4mol% Cr2O3 (Mn:Cr=1:1) on the reaction,microstructure, and electrical properties, such as the bulk defects and grain boundary properties, of ZnO-Bi2O3-Sb2O3 (ZBS;Sb/Bi=0.5, 1.0, and 2.0) varistors. The sintering and electrical properties of Mn,Cr-doped ZBS, ZBS(MnCr) varistors werecontrolled using the Sb/Bi ratio. Pyrochlore (Zn2Bi3Sb3O14), α-spinel (Zn7Sb2O12), and δ-Bi2O3 (also β-Bi2O3 at Sb/Bi≤1.0)were detected for all of the systems. Mn and Cr are involved in the development of each phase. Pyrochlore was decomposedand promoted densification at lower temperature on heating in Sb/Bi=1.0 system by Mn rather than Cr doping. A morehomogeneous microstructure was obtained in all systems affected by α-spinel. In ZBS(MnCr), the varistor characteristics wereimproved dramatically (non-linear coefficient, α=40~78), and seemed to form Vo.(0.33eV) as a dominant defect. Fromimpedance and modulus spectroscopy, the grain boundaries can be seen to have divided into two types, i.e. one is tentativelyassigned to ZnO/Bi2O3 (Mn,Cr)/ZnO (0.64~1.1eV) and the other is assigned to the ZnO/ZnO (1.0~1.3eV) homojunction.
        4,000원