본 연구에서는 국산밀 품종에 대해 발아시간에 따른 항산 화 성분 및 항산화 활성을 측정하였다. 발아시간에 따른 국산 밀 에탄올 추출물의 총 폴리페놀, 플라보노이드 및 탄닌 등 페놀성분의 함량은 발아시간에 따라 유의적인 차이를 보이 는 것으로 나타났다. 무처리 금강밀, 조경밀, 백중밀 및 고소 밀의 총 폴리페놀 함량은 13.74, 15.05, 16.84 및 13.02 mg GAE/100 g이었으며, 발아시간이 증가함에 따라 유의적으로 증가하는 경향을 보였다(p<0.05). 총 플라보노이드 함량은 각 각 5.11, 6.72, 6.28 및 5.43 mg CE/100 g이었으며, 발아시간이 증가함에 따라 큰 차이를 보이지 않았으나, 유의성을 보이는 것으로 나타났다(p<0.05). 총 탄닌 함량은 각각 9.19, 8.86, 8.93 및 8.66 mg TAE/100 g이었으며, 발아시간이 증가함에 따 라 큰 차이를 보이지 않았으나, 유의성을 보이는 것으로 나타 났다(p<0.05). 금강밀, 조경밀, 백중밀 및 고소밀의 DPPH 라 디칼 소거활성은 각각 30.77, 23.88, 25.35 및 18.73 mg TE/100 g이었으며, 25℃에서 72시간 발아 시료가 각각 47.47, 44.17, 38.22 및 42.85 mg TE/100 g으로 유의적으로 높은 활성을 보 이는 것으로 나타났다(p<0.05). ABTS 라디칼 소거활성은 각 각 83.42, 88.53, 88.87 및 79.97 mg TE/100 g이었으며, 발아시 간이 증가함에 따라 유의적으로 증가하는 경향을 보였다 (p<0.05). 이상의 결과 국산밀의 발아를 통하여 페놀성분 및 라디칼 소거활성이 증진된 효과를 얻을 수 있는 것을 확인할 수 있었다.
Hexaploid wheat (Triticum aestivum L.) exceeds about 30% of the world’s cereal production and cultivated over 220 million ha worldwide. Heat stress during the grain filling period gives detrimental effect on crop yields and has emerged as a serious problem throughout the world. Korean wheat cultivars that were released since 1960s were developed for various aims such as winter hardness, earliness, and pest resistance, etc. However, heat stress resistance is an emerging target for wheat breeding nowadays. Selected 11 Korean wheat cultivars (“Baegjoong”, “Dajung”, “Goso”, “Hanbaek”, “Jokyung”, “Joeun”, “Jopum”, “Keumgang”, “Olgeuru”, “Sinmichal”, “Uri”) were exposed to high temperature from DAF (days after flowering) 9~13. In this study, plant responses to heat stress as measured by reduction ratios of total chlorophyll contents, 100 seed weight, shoot dry weight can be translated into degree of tolerance. Therefore, these parameters can be used in wheat breeding for heat tolerance during grain filling period. The obtained results allow us to classify cultivars for heat stress tolerance. Pedigree information of Korean cultivars was shown that wheat line of either tolerant, moderate tolerant, or susceptible trait is succeeded to their descendent, which enable breeders to develop heat stress tolerant wheat by appropriate parental choice.
Nutritious and functional foods from crop have received great attention in recent years. Colored-grain wheat contains high phenolic compound and a large number of flavonoid. One of plant pigments, wheat anthocyanin is increasingly emerging as natural compounds for consumer´s health and condition. Red grains and white grains with different antioxidant activity was used to conduct germination assay. Antioxidant enzyme assay of POD, APX, CAT, GST, GR and GPx was conducted during the imbibitional phase of mature seeds. Malondialdehyde (MDA) content was analyzed to assess the activity of ROS during imbibition phase of mature seeds and alpha-amylase contents were quantified for 3 days during dark imbibition. Additionally, sprouting rates of developing seeds in spikelet after anthesis with damp condition were measured in each red grain groups for two weeks to evaluate sprout ability affected by phytochemical of red grain wheat. In summary, we identified that red grain wheat showed higher antioxidant enzyme activity involved in ROS scavenging during imbibition. Sprouting rate during dark imbibition in developmental spikelet of four groups classified by color suggest that phytochemicals in dark red grain wheat caused negative effects to sprouting.
Low-molecular-weight glutenin subunits (LMW-GS) play a crucial role in the processing quality of wheat flour. They are encoded multi gene family located at the Glu-A3, Glu-B3 and Glu-D3 on the short arm of chromosome 1A, 1B and 1D respectively. Typical LMW-GSs are composed of three parts including a short N-terminal domain, a relatively short repetitive domain and a C-terminal domain. Further, typical LMW-GS sequences are divided into LMW-s, LMW-m and LMW-i types, on the basis of the first amino acid of the mature proteins (serine, methionine and isoleucine, respectively). Although it is known that the allelic variation of LMW-GSs affect the properties of dough, it is still not clear which LMW-GSs confer better bread-making quality because of the larger number of expressed subunits and their overlapping mobility with abundant gliadin proteins. Therefore, it is important to characterize LMW-GS genes and develop functional markers to identify different LMW-GS alleles for application in wheat breeding. In this review, we discuss the various aspects of LMW-GS, including their structural characteristics, the development of marker, relationship between LMW-GSs and bread wheat quality, and genetic engineering of the LMW-GSs.
Soil salinity limits crop productivity in many regions. This problem would be more serious as the global climate changes and worldwide water shortages would accelerate soil salinization. This study is fulfilled with aim on resolve crop cultivation in dry/saline land as an international joint research project with Tunisia. Total 48 lines of wheat cultivars including 32 common wheat (16 Korean wheat, 16 Tunisian common wheat) and 16 Tunisian durum wheat were incorporated in this study. Salt stress was applied for 2 weeks by submerging the pots into 500 mM NaCl at 3-leaf stage followed by re-watering for restoration in greenhouse. Numerous agronomic/growth parameters were scored for tolerence. SSR primers that have been known to be related to salt tolerance were applied to explain selected population. The correlation between PCR-based length polymorphism of selected lines and their resistance were evaluated. The obtained information will aid selection for salt tolerance hexa/tetraploid wheats. Acknowledgement: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012K1A3A1A09028123) and carried out with the support of “Cooperative Research Program for Agriculture Science & Technology Development (Project title: Development of high yielding wheat with stress tolerance via molecular breeding strategies, Project No. PJ008031)”, Rural Development Administration, Republic of Korea.
Drought tolerance is the ability of a plant to live, grow, and reproduce properly with limited water supply or under periodic conditions of water deficit. However, the climate changes and worldwide water shortages would result in the loss of applied water to irrigated land, increasing soil water deficit. To control the situation, we have carried out the international joint research project for the aim of developing that drought tolerance common wheat and durum wheat in Korea and Tunisia. Total 79 (41 common wheat, 39 durum wheat) Tunisian lines and 33 Korean wheat cultivars were incorporated in this study. Drought stress was applied for 25 days of stopping irrigation from the 3-leaf stage followed by re-watering for restoration in greenhouse. We selected top 13 (5 Korean line, 8 Tunisian line) tolerant lines and 11 (5 Korean, 6 Tunisian) susceptible lines based on growth parameter analysis. Primers (Operon primers and wheat Dreb1 gene) that have been known to be related drought resistance were applied to explain selected population. The correlation between PCR-based length polymorphism of selected lines and their resistance were evaluated. The obtained primer information will aid selection for drought tolerance durum as well as hexaploid common wheat.
Gluten is the main functional component of wheat, and is the main source of the viscoelastic properties in a dough. One of the gluten group is glutenin, which is composed of high molecular weight (HMW) and low molecular weight (LMW) subunits. The HMW glutenin subunits (HMW-GS) have been shown to play a crucial role in determining the processing properties of the grain. They are encoded by the Glu-1 loci located on the long arms of homeologous group one chromosomes, with each locus comprising two genes encoding x- and y-type subunits. The presence of certain HMW subunits is positively correlated with good bread-making quality. The highly conserved N- and C- terminal contaning cystein residues which form interand intra-chain disulphide bonds. This inter chain disulphide bonds stabilize the glutenin polymers. In contrast, the repetitive domains that comprise the central part of the HMW-GS are responsible for the elastic properties due to extensive arrays of interchain hydrogen bonds. In this review, we discuss HMW-GS, HMW-GS structure and gluten elasticity, relationship between HMW-GS and bread wheat quality and genetic engineering of the HMW-GS.
미성숙 종자로부터 추출된 전체 RNA를 이용하여 합성한 cDNA와 LMW-GS 특이 프라이머세트를 이용하여 43개의 LMW-GS 유전자를 분리하였다. 각각의 유추 아미노산은 상동성이 높은 20개의 시그널 펩타이드, N-말단 영역, 반복서열영역 그리고 C-말단 영역을 가지며 C-말단 영역에 분자내 혹은 분자간 이황화 결합을 형성하는 전형적인 8개의 시스테인을 가지고 있었다. 이들 시스테인의 위치는 첫번째, 일곱번째를 제외하고는 보존되어 있었다. Ikeda
Seed color is an important trait affecting flour yield and quality in wheat. Seed color also is either tightly linked to or pleiotropically controls seed dormancy in wheat, because most of the red-seeded wheats are tolerant to pre-harvest sprouting in comparison to white-seeded wheats. Recently, metabolomics approaches have recently been used to assess the natural variance in metabolite content between individual plants, an approach with great potential for the improvement of the compositional quality of crops. Basically, in the study here, the simultaneous proteomic and metablomic approaches are being investigated to identify the expressed proteins of genes and specific metabolism responsible for the expression of red and white colors of seed.
Red seed “Jinpum” and white seed “Kumkang” cultivars were used in this study to identify the storage proteins use of 2-DE, MALDI-TOF/MS. Here we optimize tissue extraction methods compatible with high-throughput, reproducible nuclear magnetic resonance (NMR) spectroscopy based metabolomics. It appears that the proteins expressed were different each other according to two different cultivars from the seeds of hexaploid wheat. Some selected protein spots were identified as follows: B3-hordein, Gamma-hordein-3,bifunctionalalpha amylase/subtilisin Inhibitor.
To monitor metabolic profile, wheat grain was ground in liquid nitrogen, ensuring a homogeneous mix of the tissue, solution samples extracted from seed grains of two wheat cultivars were conducted to measurement of metabolite using 1H-1D NMR method. Representative 1H-1D NMR spectra showing the metabolic fingerprints of wheat grain extracted and presented in Fig. The different peaks, observed at 3.4 and 4.3 ppm, were detected and difference in each two cultivars. The metabolic fingerprint of each two wheat cultivars by 1H-1D NMR were analysed using partial least squares (PLS) in mutivariate analysis to confirm metabolic profiling between different cultivars and to screen chemical shift spectrum corresponding to metabolite specifically abundant in each cultivars. Profiling using 1H-1D NMR was applied to measure of abundance of major metabolite. In total metabolites were compared between “Jinpum” and “Kumkang” cultivars. Therefore, NMR based on the metabolic-phenotyping should be mostly applicable to systematic exploration of plant genetic resources as well as to metabolite based on the breeding program involved in crops productivity.
The effect of osmotic condition on β-glucuronidase (GUS) transient expression was evaluated in microspore-derived embryos of wheat. Microspore explants were treated on medium containing various mannitol concentrations prior to and post bombardment with plasmid DNA pAHC25 containing uidA gene controlled by maize ubiquitin 1 (UBI1) promoter. GUS expression in the bombarded explants was examined by histochemical and fluorometric assays. Increased GUS expression was observed with mannitol treatment when compared to untreated explants. The histochemical study showed that the number of blue (GUS) foci were the highest in the bombarded explants treated with 0.6 M mannitol medium. The fluorometric assay of bombarded explants also proved 3.5-fold increase in GUS activity with 0.6 M mannitol treatment when compared to without mannitol treatment. These results indicate that 0.6 M mannitol is beneficial for improving transformation efficiency of wheat microspore-derived embryos or embryogenic calli through biolistic transformation.
비닐피복을 이용, 보리, 밀 품종의 봄철 저온장해의 대규모 유도와 품종간 차이로 선발 가능성을 구명하고자 포장의 비닐 피복을 이용한 저온처리시험을 실시하였다. 저온에 대해 보리, 밀 모두 가장 민감한 생육시기는 수잉기였고 영화 분화기 > 화기발육기 순이었다. 같은 생육정도라도 맥종간 장해정도에 차이를 보였는데 보리, 밀 각각 고사이삭비율 28%, 59%, 고사개체비율 10%, 44%, 퇴화이삭비율 18%, 44%였다. 저온장해 저항성 품종은 없었으나 품종간 장해 정도는 차이를 보여 보리에서는 찰보리가, 밀에서는 그루밀, 조광밀 등이 안정적인 수량을 보였다. 저온스트레스는 수량구성요소중 주로 수수와 일수립수에 큰 영향을 미치는 것으로 나타났으며 보리품종중 수원 259호와 강보리 수량이 수수와 밀접한 상관을 보였으나 일수립수와는 상관이 없었다. 밀은 대부분의 품종들이 세 시기 모두 수수와 밀접한 상관을 보였고 생육이 진전된 시기에는 일수립수와도 상관을 보였다. 저온장해에 대한 유전자형을 구분하기 위해 포장에서 비닐피복이라는 간단한 처리에 의해 저온저항성 품종이나 계통의 선발이 가능할 것으로 생각되나 시험기간의 2~4 월의 저온내습일수와 온도하강 정도에 변이가 있어 최소 2년 정도의 검정기간이 필요하다.