검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 327

        141.
        2010.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        게임은 가장 중요한 콘텐츠로 자리매김하였다. 이러한 중요성에 따라, 패턴 인식 기술을 활용한 컴퓨터 게임 제작 사례가 점점 늘고 있다. 이것은 게임 속에서 벌어지는 세계가 점점 복잡해지고 게임의 흥미도에 대한 사용자의 욕구 가 증대하기 때문에 생기는 자연스런 현상이다. 이 논문은 신경망과 HMM을 이용한 사례를 집중적으로 살펴보며, SVM과 결정 트리를 사용한 경우도 언급한다. 최근의 논문에 대해 어떻게 특징을 추출하였는가, 어떤 분류기를 사용하 고 그것의 구조가 어떤지, 그리고 활용한 결과로 얻은 효과에 집중하여 사례를 조사하였다. 토론에서는 향후 전개 방 향과 연구 주제에 대해 언급한다.
        4,000원
        142.
        2009.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        북서태평양에서 발생한 태풍에 대해 발생 후 5일 동안 12시간 간격으로 태풍의 강도 및 진로를 예측할 수 있는 인공신경망 모델을 개발하였다. 사용되어진 예측인지는 CLIPER(발생 위치 강도 일자), 운동학적 파라미터(연직바람시어, 상층발산, 하층상대와도), 열적 파라미터(상층 상당온위, ENSO, 상층온도, 중층 상대습도)로 구성되어졌다. 예측인자의 특성에 따라 일곱개의 인공신경망 모델들이 개발되었으며, CLIPER와 열적 파라미터가 조합된(CLIPER-THERM) 모델이 가장 좋은 예측성능을 보였다. 이 CLIPER-THERM 모델은 강도 및 진로 모두에서 동절기보다 하절기에 더 나은 예측성능을 나타내었다. 또한 태풍의 발생이 아열대 서태평양의 남동쪽에 위치할수록 강도예측에서는 큰 오차를 보였고, 진로예측에서는 아열대 서태평양의 북서쪽에서 발생할수록 큰 오차를 보였다. 이후 인공신경망 모델의 예측성능을 검증하기 위해 같은 예측인자들을 이용하여 다중선형회귀모델을 개발하였으며, 결과로서 비선형 통계기법인 인공신경망 모델이 다중선형회귀모형보다는 더 나은 예측성능을 보였다.
        4,200원
        143.
        2009.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Yield is a very important measure that can expresses simply for productivity and performance of company. So, yield is used widely in many industries nowadays. With the development of the information technology and online based real-time process monitoring
        4,000원
        144.
        2009.05 구독 인증기관 무료, 개인회원 유료
        이 논문에서는 모바일 통신망에서 호 손실율의 가능성 분포에 기초하여 최대 손실률을 추정하는 방법을 제안한다. 호 손실률 가능성 분포는 관측된 호 손실률을 이용하여 퍼지추론으로 추정한다. 퍼지규칙의 소속 함수는 신경망의 EBP(error backpropagation ) 알고리즘으로 튜닝하고, 퍼지추론은 퍼지집합의 가중치 평균에 기초하여 호 손실율의 상한계를 추정한다. 이 방법은 과도한 CDR(Call Dropping Ratio)의 추정을 방지할 수 있고, 추정된 CDR 이 관측된 CDR보다 작을 때는 실시간적으로 자기보상을 실시하여 관측된 CDR이 추정된 CDR을 초과하는 경우가 없게 한다. 시뮬레이션을 통하여 제안된 방법이 관측된 호 손실률에 기초하여 상한계값을 잘 추정해냄을 보인다.
        4,500원
        145.
        2009.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        자동차는 첨단공업 기술이 고도로 집적되어 있는 인간-기계 시스템(man machine system)이다. 자동차에 대한 새로운 감성요구를 실현하기 위해서는 인체와 오랜 시간 접촉해 있는 시트 표피재의 분석이 반드시 필요하다. 본 연구에서는 자동차 시트 표피재의 역학적 특성과 감성을 고려한 고급감을 예측하여 고감성 내장 표피재 개발에 기여하고자 한다. 감성용어는 Softness(유연한), Elasticity(탱글탱글한), Volume(풍성한), Stickiness (끈끈한)를 설정하였으며, 이와 대응하는 표피재의 역학적 특성 치를 측정하였다. 피혁의 특성평가에 의한 결과로 resilience, bending moment, thickness와 friction 값을 얻을 수 있었으며, 이러한 역학적 특성 치를 softness, elasticity, volume, stickiness 값으로 변화하기 위해 fuzzy logic을 사용하였다. 또한 Fuzzy logic의 결과인 Softness, Elasticity, Volume, Stickiness 값으로 피혁의 고급감을 예측하기 위한 신경망 모델(Neural network)을 구성하였다. 즉, 자동차 표피재 중 피혁의 4가지 물리량으로 인간의 감성인 표피재의 고급감을 예측하여 고감성 자동차 시트 표피재의 개발을 위한 예측 모델의 가능성을 평가하였다.
        4,000원
        146.
        2009.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 신경망 알고리즘 및 반응표면법을 이용하여 부품의 최적화 설계 치수를 예측하고, 예측된 데이터의 신뢰성을 상호 검증하는 하는 데 있다. 부하가 변할 때, 부품의 치수를 변화시켜 가며 응력 및 변형량의 변화를 해석 데이터로 수집하여 반응표면법 및 신경망학습에 이용하였다. 이를 위해 임의의 조건에서 반응표면법으로 최적화 설계를 수행하고, 동일한 조건에서 신경망 알고리즘의 예측결과와 비교하였다. 그 결과 최대 3.0%의 치수 오차를 보이는 것으로 나타났다. 또한 검증을 위해 반대로 동일한 하중 및 치수 조건에서 유한요소해석을 통해 응력 및 처짐량을 구해 반응표면법 및 신경망학습의 결과를 비교하였으며, 이때 4.2%의 오차를 보였다. 이는 부품의 사양 변경 시 최적화 설계를 위해 반응표면법 및 신경망을 이용할 수 있으며 신뢰성이 있음을 알 수 있었다. 특히 신경망 학습을 통해 보다 효과적으로 최적화 설계가 가능함을 확인할 수 있었다.
        4,000원
        147.
        2008.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Many studies on predicting and recommending information and products have been studying to meet customers' preference. Unnecessary information should be removed to satisfy customers' needs in massive information. The some information filtering methods to remove unnecessary information have been suggested but these methods have scarcity and scalability problems. Therefore, this paper explores a personalized recommendation system based on artificial neural network (ANN) to solve these problems. The insurance product recommendation is adapted as an example to demonstrate the proposed method. The proposed recommendation system is expected to recommended a suitable and personalized insurance products for customers' satisfaction.
        4,000원
        148.
        2008.05 구독 인증기관 무료, 개인회원 유료
        본 연구는 국가 및 지역 공공기관에서 연구 개발 지원을 위한 기술 중요도 평가시 SOM 신경망 분석을 통해 합리적으로 평가할 수 있는 방법을 제시하였다. 본 연구에서 제시한 방법을 나노소재분야의 기술에 시험적으로 적용하여 적용 타당성을 확인하였다. 타당성 분석결과 SOM 신경망 분석을 통해 우선적으로 개발이 필요한 유사기술로 이루어진 기술군을 도출하였고 여러개의 기술군간 비교를 통해 기술간의 관계를 유추할 수 있는 보다 나은 기술중요도 평가 정보를 얻을 수 있었다.
        3,000원
        149.
        2007.12 구독 인증기관 무료, 개인회원 유료
        4 세대 무선망에서 이 기종 엑세스 망간의 핵심기술은 망 선택기법과 호 수락제어이다. 본 연구에서는 차세대 무선망의 이 기종 엑세스 무선망으로 CDMA-OFDMA 망을 고려하여, 이 망에 적합한 퍼지 신경망 분산 상향링크 호 수락제어를 제안한다. 제안된 기법은 이종 무선망에서 원하는 신규호의 차단확률과 서비스 진행 중인 호의 강제종료확률을 만족시키면 서, 무선자원의 효율적인 사용을 목적으로 한다. 호 수락의 결정은 무선 엑세스 망의 상향 링크에서 퍼지 추론과 신경망 학습에 의한 추정된 전력값 과 미리 결정한 상향 전력 한계값 을 비교하여 모바일 터미널에서 결정한다. 시뮬레이션을 통하여 제안한 기법의 성능을 신경 망 입력노드의 수에 따른 평균 거절율과 섹터 당 평균 이동국 수에 따른 호 손실율 및 거 절율을 평가 하였다. 그 결과 제안된 기법을 사용하는 무선망은 원하는 서비스 품질을 만족 하면서 부하의 증가에 따른 효율적인 호 수락제어가 이루어짐을 보인다.
        4,200원
        150.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        현장에서 콘크리트 구조물의 균열 깊이를 추정하기 위한 자기 보정 표면파 투과 측정과 측정된 투과 함수의 차단주파수를 이용하는 기존의 방법은 측정 조건에 따른 투과 함수의 변동성이 매우 커서 실제로 적용하기가 어려운 단점이 있다. 본 연구에서는 차단주파수와 같이 특정 주파수를 선정하여 균열 깊이를 추정하는 방법 대신에 측정된 자기 보정 표면파 투과 함수 자체를 균열 깊이 추정에 이용하는 방법을 제안하고자 한다. 이를 위하여 다양한 균열 깊이에서 측정된 자기 보정 표면파 투과 함수를 주성분 분석법을 이용하여 차원을 축소한 후, 축소된 투과 함수를 인공신경망의 입력으로 사용하여 이로부터 균열 깊이를 추정하는 방법을 제시하였다. 한편, 제안된 방법의 유효성을 판단하기 위하여 서로 다른 균열 깊이를 가진 5개의 실험체에 대하여 실험적인 연구를 수행하였으며, 실험 결과 제안된 방법이 콘크리트 구조물이 균열 질이 평가에 매우 유효한 방법임을 알 수 있었다.
        4,000원
        151.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 보 구조물의 실시간 손상위치 경보를 위해 가속도 신호를 이용한 인공신경망기반 손상검색기법을 제안하였다. 이를 위해 먼저, 실시간 손상검색을 위해 가속도 응답신호만을 이용하는 새로운 인공신경망 알고리즘을 설계하였다. 구조물의 손상상태를 나타내는 특징으로 서로 다른 두 위치에서 측정된 가속도 신호의 교차공분산 값을 이용하였다. 다음으로 실제 하중조건을 모르는 상황을 고려하여 다양한 하중패턴에 따른 복수 신경망을 구성하였으며, 각각의 신경망 학습을 위한 손상시나리오를 선정하였다. 마지막으로 양단 자유보 모형실험을 통해 제안된 기법의 유용성과 적용성을 평가하였다.
        4,000원
        152.
        2007.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        강수는 다양한 대기 변수들의 영향으로 나타나기 때문에 비선형성이 매우 강하다. 따라서 역학 모형을 통해 예측된 강수의 보정은 비선형 모형인 인공 신경망 등을 통해 가능할 것이지만, 인공 신경망의 경우 초기 가중치 선택, 지역 최소화 문제, 뉴런의 수 결정 등의 문제로 인한 한계가 있다. 그러므로 본 연구에서는 가장 보편적으로 사용되는 다중 선형 회귀 모형을 이용하여 CGCM에 의해 모사된 강수를 보정하였으며, 예측성을 살펴보았다. 이를 위하여 우선 PNU/CME 접합 대순환 모형(Coupled General Circulation model, CGCM)(박혜선과 안중배, 2004)을 이용하여 1979년부터 2005년까지 매해 4월부터 8월까지 5개월간 앙상블 적분을 하였다. 적분 결과 중 한반도를 포함한 동북아시아 지역(110˚E-145˚E, 25˚N-55˚N)의 여름철인 6월(리드 2), 7월(리드 3), 8월(리드 4) 및 여름철 평균인 JJA(from June to August) 기간의 PNU/CME CGCM에 의해 모사된 강수를 보정하기 위해 다중 선형 회귀(Multiple Linear Regression, MLR)를 이용하였다. PNU/CME 접합 대순환 모형의 결과 중 강수, 500 hPa 연직 속도, 200 hPa 발산장, 지상 기온 등의 예측 인자와 관측 강수와의 선형적인 관계를 이용하여 MLR 모형을 구축하였다. 그리고 교차 검증(cross- validation)을 수행하여 PNU/CME 접합 대순환 모형의 결과와 교차 검증 결과를 비교하였다. 상관계수, 적중률 (hit rate), 오보율(false alarm rate) 그리고 Heidke 기술 점수(Heidke skill score) 등을 살펴본 바, 보정하지 않은 모형의 결과에 비해 MLR 모형을 이용하여 보정한 결과의 강수에 대한 예측성이 뛰어난 것을 알 수 있었다.
        4,500원
        153.
        2007.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        ETCS는 1990년대 초부터 선진국에서 유료도로 톨게이트에서의 교통체증 및 지체문제를 해결하기 위하여 적용되기 시작하였다. ETCS의 성공적인 운영을 위해서는 ETCS 이용률을 정확히 예측하는 것이 중요하다. 본 연구에서는 창원시의 신뢰성 있는 ETCS 이용수요예측 모형 개발이 시도되었다. 총 11개의 설명변수들을 고려하면서 이항로짓 및 신경망 모형들이 검토되었다. 신경망모형에서 가장 좋은 결과를 얻었다. 그러나 ETCS 이용률 추정을 위해 설명변수 11개를 추정하기에는 어려움이 있으므로 차내장치 임대보증금, 절약시간, 할인률의 중요 3개 정책변수만을 고려한 신경망 및 로짓 모형들을 ETCS 이용률 추정모형으로 분석하였다. 모형의 예측력 평가와 적합도 분석에 있어서 신경망모형이 로짓모형보다 우수한 모형으로 판단되어지나 학습에 사용된 9가지 이외의 시나리오에서 신뢰성이 떨어지는 것으로 나타나, ETCS 이용률 추정 모형으로 3개의 중요한 정책변수를 고려한 이항로짓모형이 제안된다. 이 모형은 평균제곱오차 0.14, σ20.31, x2488.9로 신뢰성이 높은 모형으로 평가되며 창원시와 규모가 유사한 도시에 적용이 가능할 것으로 기대된다.
        4,200원
        154.
        2006.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 교량 모니터링 시스템의 일부분으로 서해대교에 설치된 교량 하중측정 시스템(BWIM system)으로부터 획득한 신호를 분석하여 통행차량의 정보를 추출하기 위한 알고리즘의 개발과정과 이를 위해 수행한 현장 차량주행시험에 대하여 기술하였다. 개발된 BWIM 시스템은 포장층에 매설하는 축감지기가 없는 형태로, 바닥판과 가로보에 설치된 변형률계로부터 측정한 시간이력 변형률신호만을 이용하였다. 이들 측정신호로부터 추출하고자 하는 차량의 정보는 통과차로, 통과속도, 차 축수 및 총 중량이며, 이들 정보의 추출을 위해 패턴인식기법의 일종인 인공신경망(Aritificial Neural Network, ANN) 기법을 사용하였다. 현장 차량주행시험을 통하여 기지차량 및 미지차량 통행시의 BWIM 응답 데이터를 측정하였으며, 이들 실측데이터를 사용하여 인공신경망의 학습 및 성능검증을 수행하였다. 개발된 기법을 사용하여 추출되는 차량의 정보들은 현재의 교량상태 및 피로수명 평가시 활용될 수 있을 것이며, 향후 설계트럭 하중모델의 개정시 기초자료로도 활용될 수 있을 것으로 기대된다.
        4,000원
        155.
        2006.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        목적 : 인간의 뇌는 손상을 받은 후에 자발적인 회복이나 뇌신경 회로의 재조직화를 통해 기존의 기능을 회복 할 수 있다.이러한 뇌의 재조직화가 뇌졸중 환자의 운동 기능회복에 중요한 역할을 하는 것으로 알려져 있다.최근의 뇌지도화 기법이 발달함에 따라,뇌손상 환자의 운동 기능 회복에 따른 뇌신경망의 재조직화에 대한 몇 가지 기전이 보고되었고,특히 뇌손상 부위에 따라 뇌활성화되는 양상이 서로 다르게 나타날 수 있다고 추정되고 있다.따라서 본 연구는 뇌손상 부위에 따른 뇌 활성도의 양상을 비교하고자 하였다. 연구방법 : 본 연구에 참여한 대상자는 손의 운동 기능이 일상생활을 독립적으로 할 수 있는 정도로 회복되고 그 기능이 서로 비슷한 대뇌피질(n=2) 또는 방사관(n=2)에 국소적인 손상을 받은 뇌경색 환자 4명과 신경학적 증상에 대한 과거 병력이 없는 정상 성인(n=7)을 대상으로 하였다.환자군에서 도수근력검사,악력,퍼듀-페그 보드와 경상운동의 정도를 측정하였고,모든 대상자는 손가락의 굴곡과 신전을 반복하는 과제를 실시하는 동안,기능적 자기공명영상의 촬영에 참가하였고,이 때 활성화되는 뇌부위를 분석 비교하였다. 결과 : 환자군에서 평가된 손의 운동 기능은 모두 비슷하였지만,뇌 활성화되는 양상은 서로 다르게 나타났다,대 뇌피질에 손상을 받은 환자들은 정상인 및 그들의 비손상측 손 운동시 활성화되는 양상과 같이 운동을 수행한 손의 반대측 일차운동피질에서 활성화를 보였다.방사관에 손상을 받은 환자군은 양측의 일차운동피질에서 활성화를 보였다. 결론 : 뇌손상 부위는 대뇌피질과 방사관으로 분류되었고,손의 운동 기능 회복의 정도는 비슷하였다.하지만 활성화된 부위는 명확하게 다르게 나타났다.따라서 뇌손상 부위에 따라 뇌신경 회로의 재조직되는 형태가 서로 다르게 나타난다는 것을 알 수 있다.이는 뇌신경재활의 영역에서 마비된 손의 기능이 회복됨에 따라 뇌신경망 에서 나타나는 가소성을 증명하는 것으로,환자의 예후 측정과 신경생리학적 기전에 대한 이해를 제공할 것으로 생각된다.
        4,000원
        156.
        2006.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        교량의 손상추정을 위한 구조계 규명기법은 신호취득시스템 및 정보처리기술의 발전과 함께 최근에 많은 연구개발이 이루어지고 있다. 신경망기법이나 유전자 알고리즘과 같은 소프트컴퓨팅 기법은 뛰어난 패턴인식성능 때문에 손상추정 문제에 활발히 활용되고 있다. 본 연구에서는 모드계수를 활용한 신경망기법기반 손상추정을 수행하였으며, 신경망을 훈련시키기 위한 훈련패턴을 생성하는 해석모델에서의 불확실성을 효과적으로 고려할 수 있는 방법을 제시하였다. 해석모델의 불확실성 대하여 민감하지 않은 입력자료인 손상 전 후의 모드형상의 차 또는 모드형상의 비를 신경망의 입력자료로 활용하였다. 단 순보와 다주형교량에 대한 수치예제를 통하여 본 연구에서 제시한 기법의 타당성 및 적용성을 검증하였다.
        4,600원
        157.
        2005.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        엘니뇨현상과 관련된 해양 아표층 변동성을 조사하기 위해 1980년부터 2004년까지의 적도 해역의 20도 등온선 깊이(Z20)와 난수질량(WWV) 자료를 분석하였다. 주성분 분석, 합성 분석 및 교차상관 분석 결과, 아표층 시계열 자료는 Nino3.4 SST와 유의미한 시간 지연을 가지고 강한 상관성을 보였다. 이 결과는 아표층 해양 변수가 엘니뇨현상에 유용한 예측 인자임을 시사한다. 분석된 결과를 근거로 1996년부터 2004년까지 Nino3.4 SST를 예측하기 위해 신경망 예측 모델을 구성하였다. 해상풍을 입력 자료로 사용하였을 경우 보다 WWV를 적용하였을 때 3개월 이하의 단기 예측을 제외하고 모든 예측 시간에서 더 우수한 예측력을 보였으며, 5-8개월의 예측에 있어서는 기존의 여러 통계 모델 결과보다 예측 성능이 우수함을 확인하였다.
        4,000원
        158.
        2005.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        철근콘크리트 부재의 전단거동에 대한 오랜 연구에 의하여 이에 대한 다양한 이론모델들과 제안식들이 존재한다. 그러나 전판거동의 메커니즘이 복잡하고 영향을 미치는 요소들이 많아서 이론모델들은 대부분 매우 복잡한 경향이 있고, 실험에 의한 제안식들은 제한된 범위내의 실험변수에 대해서만 유효한 경우가 많다. 이러한 문제점을 해결할 수 있는 대안의 하나로써 인공신경망이 여러 연구자들에 의하여 제안되어 왔으며, 본 논문에서는 인공신경망을 이용하여 전단보강근이 없는 철근콘크리트 보의 전단강토를 예측하였다 특히, 기존의 전단실험결과를 광범위하게 모아 구축한 데이타베이스를 활용함으로써 넓은 범위의 구조변수들을 포함한 다양한 부재들을 인공신경망의 훈련자료로 이용하였고, 인공신경망에 의한 전단강토 예측 결과를 ACI의 규준식, Zsutty, Okamura의 제안식들과도 비교 분석하였다. ACI의 규준식은 전단보강근이 없는 철근콘크리트 부재에 대해서 매우 부정확한 전단강도를 제공하였으며, Zsutty의 제안식은 ACI의 규준식에 비해 향상된 예측 결과를 보였으나 부재의 크기효과를 반영하지 못하였다. Okamura의 제안식은 주요 변수들의 영향을 비교적 잘 반영하여 상당히 정확하면서도 안정적인 전단강토를 제공하였다 이에 비해 인공신경망은 실험 결과에 가장 근접한 부재의 전단강도를 제공함으로써, 다양한 변수들의 영향을 매우 정확하게 반영할 수 있는 것으로 나타나서 인공신경망이 전단강도와 같이 메커니즘이 복잡하고 영향을 끼치는 변수들이 많은 다른 구조적 거동이나 강도를 예측하는데 매우 적절한 수단을 제공할 수 있음을 보여주었다.통합에 사용될 수 있음을 보였다. 구현하였다. 분포면적은 최근 25년간 총 2,893ha에 이르는 얕은 습지의 매립으로 인해 크게 변화하고 있으며 하구를 찾는 수금류의 분포, 환경수용력 등과 크게 상관성이 있어 앞으로 심도 있는 연구가 더욱 필요하다.에서 단정도실수 및 배정도실수의 역수 제곱근 계산에 필요한 평균 곱셈 횟수를 계산한다 이들 평균 곱셈 횟수를 종래 알고리즘과 비교하여 본 논문에서 제안한 알고리즘의 우수성을 증명한다. 본 논문에서 제안한 알고리즘은 오차가 일정한 값보다 작아질 때까지만 반복하므로 역수 제곱근 계산기의 성능을 높일 수 있다. 또한 최적의 근사 역수 제곱근 테이블을 구성할 수 있다. 본 논문의 연구 결과는 디지털 신호처리, 컴퓨터 그라픽스, 멀티미디어, 과학 기술 연산 등 부동소수점 계산기가 사용되는 분야에서 폭 넓게 사용될 수 있다.순으로 좋게 평가되었다. 결론적으로 감농축액의 첨가는 당과 탄닌성분을 함유함으로써 인절미의 노화를 지연시키고 저장성을 높이는데 효과가 있는 것으로 생각된다. 또한 인절미를 제조할 때 찹쌀가루에의 감농축액을 첨가하는 것이 감인절미의 색, 향, 단맛, 씹힘성이 적당하고 쓴맛과 떫은맛은 약하게 느끼면서 촉촉한 정도와 부드러운 정도는 강하게 느낄수 있어서 전반적인 기호도에서 가장 적절한 방법으로 사료된다.비위생 점수가 유의적으로 높은 점수를 나타내었다. 조리종사자의 위생지식 점수와 위생관리 수행수준의 상관관계를 조사한 결과, 위생지식
        4,200원
        160.
        2005.05 구독 인증기관 무료, 개인회원 유료
        최근 전자상거래나 웹 컨텐츠 사이트가 늘어나면서 웹 로그 정보를 분석하여 사용자 행동 패턴이나 사이트 구조를 분석하기 위한 연구가 활발하게 이루어지고 있다. 웹 사이트에 접속함으로써 발생되는 누적된 로그를 데이터 마이닝 기법을 이용하여 사용자 행동 패턴을 분석하여 효과적으로 이용하려는 연구는 다양한 웹 컨텐츠 정보 안에서 고객이 진정으로 원하는 정보를 얻기까지 소요되는 시간과 노력을 절약하기 위한 고객 지원 서비스의 차원에서 중요한 문제로 대두되고 있다. 그러나 이러한 연구들 또한 개인화와 고객의 구매성향의 변화에 대한 실시간 대응이라는 두 가지 관점에서 해결방안을 동시에 제시하지 못하고 있다. 본 논문에서는 ART2 신경망 알고리즘을 통해 실시간적이고 방대한 량의 웹 로그 데이터를 효과적으로 군집화하기 위하여 군집화 특성을 평가하고자 한다.
        4,000원