검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 38,164

        181.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon foam composites containing hollow microspheres, reinforced by carbon nanotubes (CNTs) and montmorillonite (MMT), have been developed as the thermal insulation and EMI shielding layer. The effects of additive amounts of CNTs/ MMT on microstructure and properties of the carbon foam composites were investigated. Results showed that carbon foam composites had hierarchical porous structure, with CNTs and MMT being relatively uniformly dispersed in the composites. The addition of multiscale additives improved the mechanical, electromagnetic shielding effectiveness and thermal insulation properties of carbon foam composites. The composites containing 0.2 wt.% CNTs and 5 wt.% MMT, showed outstanding compressive strength, up to 8.54 MPa, increased by 116% to pure carbon foam. Their electromagnetic shielding effectiveness was as high as 65 dB, increased by 75%. Due to the hierarchical porous structure and MMT’s heat barrier effect, carbon foam composites presented remarkable thermal insulation properties. The minimum thermal conductivity was 0.45 W·m−1·K−1 at 800 °C. Their exceptional thermal protection can also be evidenced by ablation resistance under flame at 1000 °C. Therefore, such multifunctional carbon-based composites are ideal for use in thermal protection.
        4,000원
        182.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Moso bamboo, as a kind of renewable functional material, exhibits outstanding development potential. It is promising to prepare activated carbon with good mechanical strength and high specific surface area using moso bamboo as raw material. In this work, we employed a hydraulic extruder to extrude the bamboo charcoal and the adhesive to obtain the moso bamboo activated carbon, and improved the specific surface area of the columnar activated carbon through high-temperature water vapor activation. Through the catalytic role of the water vapor activation process, the formation and expansion of the pores were promoted and the internal pores were greatly increased. The obtained columnar activated carbon shows excellent mechanical strength (93%) and high specific surface area (791.54 m2/ g). Polyacrylamide@asphalt is one of the most effective adhesives in the high-temperature water vapor activation. The average pore size (22.99 nm) and pore volume (0.36 cm3/ g) of the prepared columnar activated carbon showed a high mesoporous ratio (83%). Based on the excellent pore structure brought by the activation process, the adsorption capacity of iodine (1135.75 mg/g), methylene blue (230 mg/g) and carbon tetrachloride (64.03 mg/g) were greatly improved. The resultant moso bamboo columnar activated carbon with high specific surface area, excellent mechanical properties, and outstanding adsorption capacity possesses a wide range of industrial applications and environmental protection potential.
        4,600원
        183.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        With the wide application of portable wearable devices, a variety of electronic energy storage devices, including microsupercapacitors (MSCs), have attracted wide attention. Laser-induced graphene (LIG) is widely used as electrode material for MSCs because of its large porosity and specific surface area. To further improve the performance of MSCs, it is an effective way to increase the specific surface area and the number of internal active sites of laser-induced graphene electrode materials. In this paper, N-doped polyimide/polyvinyl alcohol (PVA) as precursor was used to achieve in situ doping of nitrogen atoms in laser-induced graphene by laser irradiation. Through the addition of N atoms, nitrogen-doped laser-induced threedimensional porous graphene (N-LIG) exhibits large specific surface area, many active sites, and good wettability all of which are favorable conditions for enhancing the capacitive properties of laser-induced graphene. After assembly with PVA/H2SO4 as gel electrolyte, the high surface capacitance of the MSC device with N-LIG as electrode material is 16.57 mF cm− 2 at the scanning rate of 5 mV s− 1, which is much higher than the 2.89 mF cm− 2 of the MSC device with LIG as electrode material. In addition, MSC devices with N-LIG as electrode materials have shown excellent cyclic stability and flexibility in practical tests, so they have a high application prospect in the field of flexible wearable microelectronics.
        4,800원
        184.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study comprehensively investigates three types of graphite materials as potential anodes for potassium-ion batteries. Natural graphite, artificial carbon-coated graphite, and mesocarbon microbeads (MCMB) are examined for their structural characteristics and electrochemical performances. Structural analyses, including HRTEM, XRD, Raman spectroscopy, and laser particle size measurements, reveal distinct features in each graphite type. XRD spectra confirm that all graphites are composed of pure carbon, with high crystallinity and varying crystal sizes. Raman spectroscopy indicates differences in disorder levels, with artificial carbon-coated graphite exhibiting the highest disorder, attributed to its outer carbon coating. Ex-situ Raman and HRTEM techniques on the electrodes reveal their distinct electrochemical behaviors. MCMB stands out with superior stability and capacity retention during prolonged cycling, attributed to its unique spherical particle structure facilitating potassium-ion diffusion. The study suggests that MCMB holds promise for potassium-ion full batteries. In addition, artificial carbon-coated graphite, despite challenges in hindering potassium-ion diffusion, may find applications in commercial potassium-ion battery anodes with suitable coatings. The research contributes valuable insights into potassiumion battery anode materials, offering a significant extension to the current understanding of graphite-based electrode performance.
        4,600원
        185.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The intensive development of the petrochemical industry globally reflects the necessity of an efficient approach for oily sludge and wastewater. Hence, for the first time, the current study utilized magnetic waxy diesel sludge (MWOPS) to synthesize activated carbon coated with TiO2 particles for the removal of total petroleum hydrocarbons (TPH) and COD from oily petroleum wastewater (OPW). The photocatalyst was characterized using CHNOS, elemental analysis was performed using X-ray fluorescence spectroscopy (XRF), field emission scanning electron microscope (FESEM), high-resolution transmission electron microscope (HR-TEM), X-ray diffraction analysis (XRD), Fourier transform infrared spectrometer (FTIR), Raman, energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), MAP thermo-gravimetric analysis/ differential thermo-gravimetric (TGA–DTG), Brunauer–Emmett–Teller (BET), diffuse reflectance spectroscopy (DRS), and vibrating sample magnetometer (VSM). The optimization of synthesized highly porous AC/Fe3O4/TiO2 photocatalyst was conducted considering the impacts of pH, temperature, photocatalyst dosage, and UVA6W exposure time. The results demonstrated the high capacity of the MWOPS with inherent magnetic potential and desired carbon content for the removal of 91% and 93% of TPH and COD, respectively. The optimum conditions for the OPW treatment were obtained at pH 6.5, photocatalyst dosage of 250 mg, temperature of 35 °C, and UVA6W exposure time of 67.5 min. Moreover, the isotherm/kinetic modeling illustrated simultaneous physisorption and chemisorption on heterogeneous and multilayer surfaces. Notably, the adsorption efficiency of the AC/Fe3O4/TiO2 decreased by 4% after five adsorption/desorption cycles. Accordingly, the application of a well-designed pioneering photocatalyst from the MWOPS provides a cost-effective approach for industry manufacturers for oily wastewater treatment.
        5,400원
        186.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, polyimide (PI)-based activated carbon fibers (ACFs) were prepared for application as electrode materials in electric double-layer capacitors by varying the steam activation time for the PI fiber prepared under identical cross-linking conditions. The surface morphology and microcrystal structural characteristics of the prepared PI-ACFs were observed by field-emission scanning electron microscopy and X-ray diffractometry, respectively. The textural properties (specific surface area, pore volume, and pore size distribution) of the ACFs were calculated using the Brunauer–Emmett–Teller, Barrett–Joyner–Halenda, and non-local density functional theory equations based on N2/ 77 K adsorption isotherm curve measurements. From the results, the specific surface area and total pore volume of PI-ACFs were determined to be 760–1550 m2/ g and 0.36–1.03 cm3/ g, respectively. It was confirmed that the specific surface area and total pore volume tended to continuously increase with the activation time. As for the electrochemical properties of PI-ACFs, the specific capacitance increased from 9.96 to 78.64 F/g owing to the developed specific surface area as the activation time increased.
        4,600원
        187.
        2024.06 KCI 등재 구독 인증기관·개인회원 무료
        Energy storage is one of the leading problems being faced globally, due to the population explosion in recent times. The conventional energy sources that are available are on the verge of extinction, hence researchers are keen on developing a storage system that will face the upcoming energy needs. Supercapacitors, also known as ultracapacitors or electrochemical capacitors, are advanced energy storage devices characterised by high power density and rapid charge–discharge cycles. Unlike traditional batteries, supercapacitors store energy through electrostatic separation, offering quick energy release and prolonged operational life. They hold exceptional performance in various applications, from portable electronics to electric vehicles, where their ability to deliver bursts of energy efficiently complements or replaces conventional energy storage solutions. Ongoing research focuses on enhancing energy density and overall efficiency, positioning supercapacitors as pivotal components in the evolving landscape of energy storage technologies. A novel electrode material of NiO/CuO/Co3O4/rGO was synthesized which when used as a supercapacitor, the highest value of CS is 873.14 F/g which is achieved for a current density of 1 A/g under with an energy density of 190 Wh/kg and the highest power density of 2.5 kW/kg along with 87.3% retention after 5000 GCD cycles under 1 M KOH.
        188.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We successfully synthesized a porous carbon material with abundant hexagonal boron nitride (h-BN) dispersed on a carbon matrix (p-BN-C) as efficient electrocatalysts for two-electron oxygen reduction reaction ( 2e− ORR) to produce hydrogen peroxide ( H2O2). This catalyst was fabricated via ball-milling-assisted h-BN exfoliation and subsequent growth of carbon structure. In alkaline solutions, the h-BN/carbon heterostructure exhibited superior electrocatalytic activity for H2O2 generation measured by a rotating ring-disk electrode (RRDE), with a remarkable selectivity of up to 90–97% in the potential range of 0.3–0.6 V vs reversible hydrogen electrode (RHE), superior to most of the reported carbon-based electrocatalysts. Density functional theory (DFT) simulations indicated that the B atoms at the h-BN heterostructure interface were crucial active sites. These results underscore the remarkable catalytic activity of heterostructure and provide a novel approach for tailoring carbon-based catalysts, enhancing the selectivity and activity in the production of H2O2 through heterostructure engineering.
        4,000원
        189.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Chlorine is a crucial radionuclide that must be removed in irradiated nuclear graphite. Understanding the interaction between chlorine and graphene-based materials is essential for studying the removal process of 36Cl from irradiated nuclear graphite. In this study, first-principle density functional theory (DFT) was utilized to investigate the adsorption characteristic of chlorine on the original and reconstructed edges of graphene-based materials. Based on the calculation of adsorption energy of the structures after each step of adsorption, the most energetically favorable adsorption routes at four types of edge were determined: Along the armchair edge and reconstructed zigzag edge, the following adatoms would be adsorbed to compensate the distortion induced by the previously adsorbed atom. Meanwhile at the original zigzag edge, chlorine atoms would be adsorbed alternatively along the edge to minimize the repulsion between two adjacent chlorine atoms. The chemical nature of the bonds formed as a result of adsorption was elucidated through an examination of the density of states (DOS) for the two adsorbed chlorine atoms and the carbon atoms attached. Furthermore, to assess the relative stability of the adsorption structures, formation energy of all energetically favorable structures following adsorption was computed. Consequently, the predominant adsorption structure was identified as the reconstructed armchair edge with two chlorine atoms adsorbed. The desorption process of 36Cl2 from the predominant structure following adsorption was simulated, revealing an energy barrier of 1.14 V for desorption. Comparison with experimental results suggests that the chlorine removed from reconstructed armchair edges significantly contributes to the low-temperature removal stage of 36Cl from irradiated nuclear graphite.
        4,000원
        190.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Flexible electrodes, particularly paper electrodes modified with polypyrrole, have shown promise in energy-related applications. We have earlier demonstrated the usage of paper electrodes modified with polypyrrole as a flexible and suitable photoanode for photoelectrochemical water splitting (PEC). Further, modification of this electrode system with an appropriate tandem absorber system for solar fuel production is interesting in developing efficient photoanodes. In this study, we study the PEC performance of flexible polypyrrole-based paper photoanodes (PPy-PAs) by decorating them with rGO@Cu2Zn- SnS4 chalcopyrites (rGO@CZTS/PPy-PAs). The lower bandgap (~ 1.5 eV) of the rGO@CZTS/PPy-PAs system allows for efficient visible light absorption, substantially improving PEC water-splitting reactions. The rGO@CZTS/PPy-PAs exhibited an enhanced current density of ~ 13.2 mA/cm2 at 1.23 V vs RHE, ABPE of ~ 1.5%, and a hydrogen evolution rate of 177 μmoles/min/cm2. Overall, rGO@CZTS/PPy-PAs showed 2.1-fold, 1.1-fold, and 1.4-fold enhancement in photocurrent activity over PPy-PAs, CZTS/PPy-PAs, and rGO/PPy-PAs, respectively. The usability of rGO@CZTS/PPy-PAs is established in the form of stable photocurrent for more than 200 min. These findings open new possibilities for developing modified PPy PAs as flexible PEs for efficient solar-driven PEC devices and give directions on improving flexible PEs for flexible and efficient solar-driven PEC systems.
        4,000원
        191.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the formation and characterization of Pt2, Pt3 as well as Pt4 atomic clusters in cup-stacked carbon nanotubes (CSCNTs) are evaluated by DFT to examine the adsorption capacity under the clusters. The results show that the Pt clusters move toward the bottom edge or form rings in the optimized stable structure. Pt far from the carbon substrate possesses more active electrons and adsorption advantages. The three clusters can adsorb up to 17, 18, and 16 hydrogen molecules. Loading metal clusters at the bottom edge maintains a relatively good adsorption property despite the low binding energy through comparative studies. The adsorption capacity does not increase with the number of Pt for metal aggregation reducing the hydrogen adsorption area thus impacting the hydrogen storage ability and the aggregation phenomenon limiting the action of Pt metal. During adsorption, chemisorption occurs only in the Pt2 cluster, while multiple hydrogen molecules achieve physiochemical adsorption in the Pt3 and Pt4 clusters. Compared with the atomic loading of the dispersion system in equal quantities, the dispersion system features higher molecular stability and can significantly reduce the energy of the carbon substrates, providing more sites for hydrogen adsorption in space.
        4,900원
        192.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Artificial photosynthesis harnesses clean and sustainable solar power to catalyze the conversion of CO2 and H2O molecules into valuable chemicals and O2. This sustainable approach combines energy conversion with environmental pollution control. Non-oxide photocatalysts with broad visible-light absorption and suitable band structures, hold immense potential for CO2 conversion. Nevertheless, they still face numerous challenges in practical applications, particularly in CO2 conversion with H2O. Surface modification and functionalization play the significant role in improving the activity of non-oxide photocatalysts. Multifarious strategies, such as cocatalyst loading, surface regulation, doping engineering, and heterostructure construction, have been explored to optimize light harvesting, bandgap driving force, electron–hole pairs separation/transfer, CO2 adsorption, activation, and catalysis processes. This review summarizes recent progress in surface modification strategies for non-oxide photocatalysts and discusses their enhancement mechanisms for efficient CO2 conversion. These insights are expected to guide the design of high-performance non-oxide photocatalyst systems.
        6,000원
        193.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon dots (C-dots) are a developing subclass of nanomaterials which are characterized by a typical diameter of less than 10 nm. C-dots are a type of core–shell composites that feature a surface passivation with various functional groups, including amine, carboxyl, hydroxyl group, and a carbon core. Green C-dots, which have drawn a lot of interest from researchers due to their superior water solubility, excellent biocompatibility, and environmental-friendly behavior when compared to chemically generated C-dots, can be made from a variety of low-cost and renewable materials. Since green C-dots have heteroatoms on their surface in the form of carboxyl, amine, hydroxyl, or other functional groups, which can enhance their physicochemical characteristics, quantum yield (QY), and likelihood of visible light absorption, further surface passivation is not necessary. Green C-dots may find use in the areas of biosensing, catalysis, bioimaging, and gene and drug delivery. In this paper, the creation of C-dots was outlined, and its fluorescence process examined. This review represents the summary of synthesis, mechanism, properties, characterization, and applications of C-dots. This article aims at the green chemistry strategies for C-dot synthesis. Furthermore, a discussion on the applications of C-dots produced with green approaches is presented. The paper may help the researchers in the field to develop new C-dots with potential features to attract the attention of new applications.
        7,800원
        194.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Because plastics are cheap and light, their use is indispensable in our daily lives. However, the extensive use of plastics causes the disposal issue. Among various disposal processes, plastic recycling is of great attention because of minimizing waste and harmful byproducts. Herein, we recycle the most popular thermoplastic materials, high-density and low-density polyethylene, producing the anode materials for the Li-ion batteries. The electrochemical properties of the as-recycled soft carbon are investigated to study the energy storage capability as the anode of Li-ion batteries. Our work demonstrates the soft carbon recycled from plastic wastes is a promising anode material.
        4,000원
        195.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The thermal conductivity (TC) of graphene-based/metal composites is currently not satisfactory because of the existence of large interfacial thermal resistance between graphene and metal originating from the strong scattering of phonons. In this work, 6063Al-alloy-based reduced graphene oxide (rGO) composite with strong covalent bonds interface was prepared via self-assembly, reduction, and electrophoresis-deposition processes by using 3-aminopropyl triethoxysilane (APTS) as a link agent. Structural characterizations confirmed the successful construction of strong Al-O-Si-O-C covalent bonds in the as-prepared 6063Al-Ag-APTS-rGO composite, which can promote the transfer of phonons in the interface. Benefiting from the unique structure, 6063Al-Ag-APTS-rGO (214.1 W/mK) showed obviously higher cross-plane TC than 6063Al (195.6 W/mK). Comparative experiments showed that 6063Al-Ag-APTS-rGO has better cross-plane TC than 6063Al/Ag/ APTS/rGO (196.6 W/mK) prepared via physical mixing of stirring process, evidencing the significance of electrophoresisdeposition (EPD) process on constructing strong covalent bonds for improving the heat dissipation performance. Besides, the effects of different rGO contents and test temperature on the TC of the composites and their corrosion resistance were also discussed. This work demonstrated a feasible strategy for the construction of metal–carbon interface composite with improved thermal performance.
        4,500원
        196.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Graphene-based materials modified with transition metals, and their potential utilization as hydrogen storage devices, are extensively studied in the last decades. Despite this widespread interest, a comprehensive understanding of the intricate interplay between graphene-based transition metal systems and H2 molecules remains incomplete. Beyond fundamental H2 adsorption, the activation of H2 molecule, crucial for catalytic reactions and hydrogenation processes, may occur on the transition metal center. In this study, binding modes of H2 molecules on the circumcoronene (CC) decorated with Cr or Fe atoms are investigated using the DFT methods. Side-on (η2-dihydrogen bond), end-on and dissociation modes of H2 binding are explored for high (HS) and low (LS) spin states. Spin state energetics, reaction energies, QTAIM and DOS analysis are considered. Our findings revealed that CC decorated with Cr (CC-Cr) emerges as a promising material for H2 storage, with the capacity to store up to three H2 molecules on a single Cr atom. End-on interaction in HS is preferred for the first two H2 molecules bound to CC-Cr, while the side-on LS is favored for three H2 molecules. In contrast, CC decorated with Fe (CC-Fe) demonstrates the capability to activate H2 through H–H bond cleavage, a process unaffected by the presence of other H2 molecules in the vicinity of the Fe atom, exclusively favoring the HS state. In summary, our study sheds light on the intriguing binding and activation properties of H2 molecules on graphene-based transition metal systems, offering valuable insights into their potential applications in hydrogen storage and catalysis.
        4,300원
        197.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper explores the potential application of carbon nanotubes (CNTs) in the construction industry, as CNTs can effectively serve as nano-fillers, bridging the voids and holes in cement structures. However, the limited dispersibility of CNTs in water necessitates the use of dispersing agents for achieving uniform dispersion. In this study, two kinds of cement superplasticizers, polycarboxylate ether (PCE) and sulfonated naphthalene formaldehyde (SNF) were employed as dispersing agents to improve the interfacial affinity between CNTs and cement, and to enhance the strength of the cement nanocomposites. Contact angle experiments revealed that the utilization of PCE and SNF effectively addressed the interface issues between CNTs and cement. As a result, the cement nanocomposite with a CNT to PCE ratio of 1:2 exhibited an approximately 6.6% increase in compressive strength (73.05 MPa), while the CNT:SNF 1:2 cement composite showed a 4.7% increase (71.72 MPa) compared to plain cement (68.52 MPa). In addition, the rate of crack generation in cement nanocomposites with CNTs and dispersing agents was found to be slower than that of plain cement. The resulting cement nanocomposites, characterized by enhanced strength and durability, can be utilized as safer materials in the construction industry.
        4,600원
        198.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pyrolysis of methane is a carbon-economic method to obtain valuable carbon materials and COx- free H2, under the carbon peaking and carbon neutrality goals. In this work, we propose a methane pyrolysis process to produce graphite and H2 using bubble column reactor containing NiO/Al2O3 and NaCl–KCl (molten salt). The process was optimized by the different amounts of NaCl–KCl, the CH4/ Ar ratio and temperature, indicating that the CH4 conversation rate could reach 92% at 900 °C. Meanwhile, we found that the addition of molten salt could obtain pure carbon materials, even if the conversation rate of CH4 decreases. The analysis of the carbon products revealed that graphite could be obtained.
        4,000원
        199.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Municipal landfill leachate (MLL) contamination in surface water is a critical global issue due to the high concentration of toxic organics and recalcitrants. The biological treatment of MLL is ineffective due to an elevated concentration of ammoniacal nitrogen, which restricts the production of the recalcitrant degrading laccase enzyme. In this context, integrating an external laccase-anchored carbon catalyst (LACC) matrix system with the microbial system could be an efficient strategy to overcome the drawbacks of conventional biological MLL treatment technologies. In the present study, the LACC matrix was synthesized by utilizing nanoporous activated carbon (NAC) functionalized ethylene diamine (EDA) and glutaraldehyde (GA) (GA/EDA/NAC) matrix for the anchoring of laccase. The maximum anchoring capacity of laccase onto GA/EDA/ NAC was achieved to be 139.65 U/g GA/EDA/NAC at the optimized anchoring time, 60 min; pH, 5; temperature, 30 °C, and mass of GA/EDA/NAC, 300 mg and was confirmed by Fourier transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscope (SEM), and X-ray Diffraction (XRD) analyses. Further, the mechanistic study revealed the involvement of covalent bonding in the anchoring of laccase onto the functionalized surface of the GA/EDA/NAC matrix. The adsorption isotherm and kinetics of laccase anchoring onto the GA/EDA/NAC matrix were performed to evaluate its field-level application. Subsequently, the sequential microbial system (I-stage bacterial treatment followed by II-stage fungal treatment) and III-stage LACC matrix system could effectively reduce the COD by 94.2% and phenol by 92.36%. Furthermore, the Gas Chromatography-Mass Spectrophotometry (GC–MS) and FT-IR analyses confirmed the effective degradation of organic compounds and recalcitrants by the integrated microbial and LACC matrix system. The study suggested that the application of the LACC matrix system has resulted in the complete treatment of real-time MLL by overcoming the negative interference of elevated ammoniacal nitrogen concentration. Thus, the integrated microbial and LACC matrix approach could be considered to effectively treat the MLL without any secondary pollution generation.
        5,200원
        200.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The interface area of the face sheet and core of the sandwich composite is seen as a weakness due to its low de-bonding toughness. To overcome this concern, it is critical to develop a suitable modification strategy to enhance the de-bonding toughness of the face sheet/core interface. In the present study, the corrugated core reinforced sandwich composite was prepared through co-curing and secondary bonding approaches. The MWCNTs reinforced adhesive was induced in the face sheet/core interface in different weight concentrations. The MWCNT-reinforced adhesive was prepared using the sonication technique, and its dispersion was examined using atomic force microscopy (AFM). The three-point bending test revealed that sandwich composite prepared using the co-cure method has higher flexural strength than secondary bonded samples due to better bonding face sheet and corrugated core. Compared with MWCNT-free corrugated core reinforced co-cured sandwich composites (CCSC), the flexural strength of 1 wt.% MWWCNT-induced sandwich composite was increased by 101.28%. The microstructural study showed that secondary bonded samples had extensive fibre breakage at the face plate due to early de-bonding of the face sheet and corrugated core. Furthermore, the free vibrational analysis was performed to evaluate the natural frequency and damping values of the corrugated core reinforced sandwich composite. The modal test results indicated that inducing 1wt.% MWCNTs in the face sheet/core interface had enhanced the natural frequencies of co-cured sandwich composites. The present study provides a suitable method to address the weaker de-bonding toughness concerns of face sheet/core interface region of sandwich structures.
        4,000원