Perfluorinated sulfonic acid (PFSA) ionomers have been widely used for renewable energy generation, including polymer electrolyte fuel cells (PEFCs), owing to their excellent resistance to harsh chemicals and good ion-transport properties. PFSA materials experience critical chemical decomposition to radical attacks, and fast hydrogen crossover leading to fairly reduced electrochemical performances, when they are used as membrane materials. Similar chemical degradation also occurs in PEFC electrodes containing PFSA ionomer binders used as both mechanical supporters and proton conductors and shortens PEFC lifetime. In this study, several approaches based on their morphological rearrangement to overcome these economical and technical issues are proposed. They include pore-filling membrane formation, nanodispersion, and their combination.
본 발표에서는, 팔라듐계 수소분리막의 구성과 원리, 응용분야, 국내외 연구기관별 연구현황 및 한국에너지기술연구원에서 진행한 연구결과를 소개한다. 다공성지지체의 표면에 치밀질 팔라듐계 합금을 코팅하여, 수소를 선택적으로 분리할 수 있는 분리막의 특성, 모듈구성, 이를 이용한 CCS 공정에 적용예를 통하여 설명한다. 구체적인 내용으로, 1. 분리막 제조부분에서는, 평판형 다공성 니켈지지체 표면에 컬럼형태의 세라믹을 일차적으로 코팅하고, 이의 표면에 팔라듐을 코팅해서 치밀화는 공정을 설명한다. 2. 모듈 부분에서는, 모듈형태에 따른 수소플럭스와 회수율에 미치는 영향을 설명한다. 3. 개발한 분리막/모듈을 이용한 응용공정 소개를 통하여 이의 활용성 및 향후 연구방향을 제시한다.
The aim of this study was to evaluate the chemical quenching system for residual ozone and to determine the operating condition for the quenching system. Hydrogen peroxide (H₂O₂) and sodium thiosulfate (Na₂S₂O₃) were investigated as quenching reagents for ozone removal, and the tendency of each chemical was notably different. In the case of H₂O₂, the degradation rate of ozone was increased as the concentration of H₂O₂ increase, and temperature and pH value have a significant effect on the degradation rate of ozone. On the other hand, the degradation rate of ozone was not affected by the concentration of Na₂S₂O₃, temperature and pH value, due to the high reactivity between the S₂O₃²- and ozone. This study evaluates the decomposition mechanism of ozone by H₂O₂ and Na₂S₂O₃ with consideration for the water quality and reaction time. Furthermore, the removal test for the quenching reagents, which can be remained after reaction with ozone, was conducted by GAC process.
PDMS에 NaA zeolite를 0~40 wt% 가하여 PDMS-NaA zeolite 막을 제조하였다. SEM 관찰에 의하면 PDMS-NaA zeolite 막 내에 분산되어있는 NaA zeolite 입자의 크기는 2~5 μm이었다. PDMS-NaA zeolite 막의 N2와 H2 투과도는 막 내의 NaA zeolite 함량이 증가하면 증가하였고, N2보다는 H2의 투과도가 더 컸다. 그리고 PDMS-NaA zeolite 선택성(H2/N2)은 NaA zeolite 함량이 증가하면 증가하였다.
본 연구는 고추 논 비가림 재배시 피복 재료가 생육, 수량 및 dehydrogenase 활성 등에 미치는 영향을 구명하고자 충북 괴산군 농가포장에서 2012년부터 2013년까지 2년간 수행하였다. ‘독야청청(신젠타종묘)’ 품종을 사용하였으며, 멀칭용 피복 재료는 배색비닐, 흑색비닐, 생분해필름, 부직포 등 4처리를 하였다.
1. 피복 재료에 따른 고추의 초장, 주경장, 분지수, 엽장, 엽폭은 통계적인 유의성을 나타내지 않았다.
2. 고추 재배기간 지온은 오전 7시경에 가장 낮았고, 오후 5 ~ 6시경에 가장 높았다. 지온은 배색비닐, 흑색비닐, 생분해 필름, 부직포 순으로 높았다.
3. 생분해필름은 정식 후 60일부터 분해가 시작되었고, 정식 후 120일에는 80% 분해되었다.
4. 피복 재료에 따른 생과중과 건조중은 처리간에 유의성을 나타내지 않았다.
5. ASTA 값은 생분해필름에서 44.6으로 가장 높았고, 배색필름, 흑색필름, 부직포 순으로 높았다.
6. 정식 후 120일의 dehydrogenase 활성은 생분해필름>부직포 >흑색필름 >배색필름 순으로 높았다.
7. 토양 biomass C 함량은 정식 후 80일보다 정식 후 120일에 더 높았다.
8. 피복 재료에 따른 역병, 진딧물류, 담배나방, 응애류, 총채벌레류, 담배가루이의 발생 양상은 차이가 없었다.
결론적으로, 고추 논 재배시 멀칭용 피복 재료에 따른 생육과 수량은 차이를 나타내지 않았다. 생분해필름이 dehydrogenase 활성과 biomass C 함량이 높아 친환경적이고 필름 수거 노력이 필요하지 않아 노동력 절감할 수 있다. 따라서, 생분해필름을 영농에 활용을 적극적으로 검토해야 시점이며, 이러한 결과들은 관련 분야 산업의 활성화에 기여할 것으로 생각된다.
H2S is a flammable toxic gas that can be produced in plants, mines, and industries and is especially fatal to humanbody. In this study, CuO nanowire structure with high porosity was fabricated by deposition of copper on highly porous single-wall carbon nanotube (SWCNT) template followed by oxidation. The SWCNT template was formed on alumina substrates bythe arc-discharge method. The oxidation temperatures for Cu nanowires were varied from 400 to 800oC. The morphology andsensing properties of the CuO nanowire sensor were characterized by FESEM, Raman spectroscopy, XPS, XRD, and current-voltage examination. The H2S gas sensing properties were carried out at different operating temperatures using dry air as thecarrier gas. The CuO nanowire structure oxidized at 800oC showed the highest response at the lowest operating temperatureof150oC. The optimum operating temperature was shifted to higher temperature to 300oC as the oxidation temperature waslowered. The results were discussed based on the mechanisms of the reaction with ionosorbed oxygen and the CuS formationreaction on the surface.
TiCoxFe1-x(x=0.50~1.00)계 합금을 제조하고, 합금의 특성을 X-ray diffractometer (XRD), pressure composition temperature (PCT)곡선, scanning electron microscopy (SEM)에 의해 조사하였고, TiCoxFe1-x(x=0.50~1.00)-stainless steel (SS) 복합막에 대해 H2-N2 혼합기체분리실험을 하였다. X-선 회절분석에 의하면 TiCoxFe1-x(x=0.50~1.00)계 합금의 결정구조는 TiCo와 같은 입방정구조이었다. TiCoxFe1-x(x=0.50~1.00)계 합금은 120°C에서 hysteresis현상을 나타내었고, 합금 중 Fe의 양이 증가함에 따라 x=0.90~1.00과 0.50~0.55 범위에서는 hysteresis가 증가하였고, x=0.55~0.90 범위에서는 감소하였다. 가장 작은 hysteresis를 나타낸 합금은 TiCo0.55Fe0.45이었다. 120°C에서 TiCoxFe1-x(x=0.50~1.00)-SS 복합막의 수소투과압력의 최저값은 TiCo0.55Fe0.45에서 2.5 atm을 나타내었고, 최대값은 TiCo0.90Fe0.10에서 10 atm을 나타내었다. TiCoxFe1-x(x=0.50~.00)-SS 복합막에 의하여 120°C에서 H2-N2 혼합기체를 분리하는 경우, 가장 우수한 복합막은 고압부의 수소투과압력이 2.5 atm으로 가장 낮고, hysteresis가 가장 작은 TiCo0.55Fe0.45-SS 복합막이었다.
PTMSP와 PDMS로부터 합성된 PTMSP/PDMS 그라프트 공중합체에 다공성 borosilicate를 0~5 wt% 첨가하여 PTMSP/PDMS-borosilicate 복합막을 제조하였다. 합성된 PTMSP/PDMS 그라프트 공중합체의 수평균분자량(Mn)은 460,000이었 고, 중량평균분자량(Mw)은 570,000이었으며, 유리전이온도(Tg)는 33.53°C에서 나타났다. TGA 측정에 의하면 PTMSP/PDMS에 borosilicate가 첨가되면 복합막의 감량이 작아지고 감량이 완결되는 온도도 낮아졌다. SEM측정에 의하면 PTMSP/PDMS-borosilicate 복합막 내에 들어있는 borosilicate는 1~5 μm 크기로 분산되어 있었다. 기체투과 실험에 의하면 PTMSP/PDMS-borosilicate가 첨가되면서 자유부피, 공동, 기공률이 증가하여 기체투과가 용해확산에 의한 것보다 분자체거름, 표면확산, Knudsen 확산에 의해 일어나는 경우가 점차 증가하여 H2와 N2의 투과도는 증가하고 선택도(H2/N2)는 감소하였다
졸겔법에 의해서 trimethylborate (TMB)/tetraethylorthosilicate (TEOS) 몰비 0.01, 온도 800°C에서 SiO2⋅B2O3가 제조되었다. 그리고 제조된 SiO2⋅B2O3와 PDMS[poly(dimethylsiloxane)]로부터 PDMS-SiO2⋅B2O3 복합막을 제조하고 막의물리화학적 특성을 TG-DTA, FT-IR, BET, X-ray, SEM에 의해 조사하고 그리고 H2와 N2의 투과도와 선택도를 조사하였다.TG-DTA, BET, X-ray, FT-IR 측정에 의하면 SiO2⋅B2O3는 무정형의 다공성 SiO2⋅B2O3였으며, 기공의 평균직경은 37.7821Å, 표면적은 247.6868 m2/g이었다. TGA 측정에 의하면 PDMS 내에 SiO2⋅B2O3가 첨가되었을 때 PDMS-SiO2⋅B2O3 복합막의 열적 안정성은 향상되었다. SEM 관찰에 의하면 SiO2⋅B2O3는 약 1 μm 크기로 PDMS 내에 덩어리 상태로 뭉쳐서 분산되어 있었다. 기체투과실험에 의하면 PDMS 내에 SiO2⋅B2O3 함량이 증가하면 H2와 N2의 투과도는 증가하였고,
Odor compounds and air-born microorganisms are simultaneously emitted from various aeration processes such as aerobic digestion, food-waste compositing, and carcass decomposition facilities that are biologically-treating wastes with high organic contents. The air streams emitted from these processes commonly contain sulfur-containing odorous compounds such as hydrogen sulfide(H2S) and bacterial bioaerosols. In this study, a wet-plasma method was applied to remove these air-born pollutants and to minimize safety issues. In addition, the effects of a gas retention time and a liquid-gas ratio were evaluated on removal efficiencies in the wet-plasma system. At the gas reaction time of 1.8 seconds and the liquid-gas ratio of 0.05 mLaq/Lg, the removal efficiency of bioaerosol was approximately 75 %, while the removal efficiency of H2S was lower than 20 %, indicating that the gaseous compound was not effectively oxidized by the plasma reaction at the low liquid addition. When the liquid-gas ratio was increased to 0.25 mLaq/Lg, the removal efficiencies of both H2S and bioaerosol increased to greater than 99 %. At the higher liquid-gas ratio, more ozone was generated by the wet-plasma reaction. The ozone generation was significantly affected by the input electrical energy, and it needed to be removed before discharged from the process.
본 연구에서는 한우 보증씨수소 KPN 493, 586, 614, 632, 666을 암소에게 인공 수정하여 생산된 자손 축 총 60두(5처리×12두씩/처리구당)에 대한 육질의 이화학적 특성과 상관관계를 분석하였다. 등심 면적 및 근내지방도는 KPN 586 자손축이 가장 우수하였으며(p<0.05), 육질의 이화학적 특성에서는 처리구 간에 거의 차이가 없었으나 특히 풍미와 육색의 황색도(b값)가 KPN 493이 가장 좋았다(p<0.05). 지방산중 올레인산은 KPN 493은 가장 높았다(p<0.05). 또한 각 형질별 상관관계에서, 도체중과 등심 단면적, 등심 단면적과 근내지방도에서 정(+)의 상관관계를 나타내었고(P<0.01), 보수력은 수분과 조단백질 함량에서 부(-)의 상관관계를 나타내었 (P<0.01). 또한 연도는 다즙성과 정(+)의 상관관계, 풍미는 다즙성, 연도 간에 정(+)의 상관관계, C18:1n9과 C20:1n9와 불포화 지방산 간에는 정(+)의 상관 관계를 나타내었다(P<0.01).
무정형의 괴상의 다공성 borosilicate는 trimethylborate (TMB)/ tetraethylorthosilicate (TEOS) 몰비 0.01∼0.10 겔 체를 700∼800°C 온도범위에서 열처리 하였을 때 얻어졌다. BET와 SEM 관찰에 의하면 700∼800°C에서 얻어진 borosilicate의 표면적은 251.12∼355.62 m2/g이고, 기공직경은 3.5∼4.9 nm이며, 입자크기는 30∼60 nm이었다. TGA측정에 의 하면 borosilicate가 poly[1-(trimethylsilyl)propyne](PTMSP)에 첨가되었을 때 PTMSP-borosilicate 복합막의 열적 안정성은 향 상 되었다. SEM관찰에 의하면 borosilicate는 1 μm 크기로 복합막 내에 분산되어 있었다. 기체투과실험에 의하면 PTMSP에 borosilicate 함량이 증가하면 자유부피, 공동, 기공률이 증가하여 기체투과가 용해확산에 의한 것보다 분자체거름, 표면확산, Knudsen 확산에 의해 일어나는 경우가 점차 증가함으로 해서 H2와 N2의 투과도는 증가하고 선택도(H2/N2)는 감소하였다.
In this study, the reduction kinetics and behaviors of oxides in the water-atomized iron powder have been evaluated as a function of temperature ranging 850-1000˚C in hydrogen environment, and compared to the reduction behaviors of individual iron oxides including Fe2O3, Fe3O4 and FeO. The water-atomized iron powder contained a significant amount of iron oxides, mainly Fe3O4 and FeO, which were formed as a partially-continuous surface layer and an inner inclusion. During hydrogen reduction, a significant weight loss in the iron powder occurred in the initial stage of 10 min by the reduction of surface oxides, and then further reduction underwent slowly with increasing time. A higher temperature in the hydrogen reduction promoted a high purity of iron powder, but no significant change in the reduction occurred above 950˚C. Sequence reduction process by an alternating environment of hydrogen and inert gases effectively removed the oxide scale in the iron powder, which lowered reduction temperature and/or shortened reduction time.
Hydrogen energy is expanding in range for civil use together with development of pollution-free power sources recently, and it is judged that the use of hydrogen will increase more as a part of carbon dioxide reduction measures according to the Climatic Change Convention. Especially, it is thought that the securement of safety of the used dispenser will be the biggest obstacle in the use of high-pressure hydrogen because the hydrogen station is operated in a high pressure. This study found risks in the process and problems on operation by making use of HAZOP(6 kinds), a qualitative safety evaluation technique, and FMEA(5 kinds), a fault mode effect analysis, for the hydrogen charging system at a hydrogen gas station, derived 6 risk factors from HAZOP and 5 risk factors from FMEA, and prepared measures for it.
For the hydrogen economy system being tried starting with the 21st century, the fields that was not dealt with so far, such as the safety measure for large leakage accidents, the safety problem at infrastructures like a hydrogen station, the safety problem in terms of automobiles depending on introduction of hydrogen cars, the safety problem in a supply for homes like fuel cells, etc., are being deeply reviewed. In order to establish a safety control system, an essential prerequisite in using and commercializing hydrogen gas as an efficient energy source, it is necessary to conduct an analysis, such as analysis of hydrogen accident examples, clarification of physical mechanisms, qualitative and quantitative evaluation of safety, development of accident interception technologies, etc. This study prepared scenarios of hydrogen gas leakage that can happen at hydrogen stations, and predicted damage when hydrogen leaks by using PHAST for this.
The existing metal getters are invariably covered with thin oxide layers in air and the native oxide layer must be dissolved into the getter materials for activation. However, high temperature is needed for the activation, which leads to unavoidable deleterious effects on the devices. Therefore, to improve the device efficiency and gas-adsorption properties of the device, it is essential to synthesize the getter with a method that does not require a thermal activation temperature. In this study, getter material was synthesized using palladium oxide (PdOx) which can adsorb H2 gas. To enhance the efficiency of the hydrogen and moisture absorption, a porous layer with a large specific area was fabricated by an etching process and used as supporting substrates. It was confirmed that the moisture-absorption performance of the SiO2/Si was characterized by water vapor volume with relative humidity. The gas-adsorption properties occurred in the absence of the activation process.
In this study, highly sensitive hydrogen micro gas sensors of the multi-layer and micro-heater type were designed and fabricated using the micro electro mechanical system (MEMS) process and palladium catalytic metal. The dimensions of the fabricated hydrogen gas sensor were about 5mm×4mm and the sensing layer of palladium metal was deposited in the middle of the device. The sensing palladium films were modified to be nano-honeycomb and nano-hemisphere structures using an anodic aluminum oxide (AAO) template and nano-sized polystyrene beads, respectively. The sensitivities (Rs), which are the ratio of the relative resistance were significantly improved and reached levels of 0.783% and 1.045 % with 2,000 ppm H2 at 70˚C for nano-honeycomb and nano-hemisphere structured Pd films, respectively, on the other hand, the sensitivity was 0.638% for the plain Pd thin film. The improvement of sensitivities for the nano-honeycomb and nano-hemisphere structured Pd films with respect to the plain Pd-thin film was thought to be due to the nanoporous surface topographies of AAO and nano-sized polystyrene beads.
Programmed cell death or apoptosis is associated with changes in K+ concentration in many cell types. Recent studies have demonstrated that two-pore domain K+ (K2P) channels are involved in mouse embryonic development and apoptotic volume decrease of mammalian cells. In cerebellar granule neurons that normally undergo apoptosis during the early developmental stage, TASK-1 and TASK-3, members of K2P channels, were found to be critical for cell death. This study was performed to identify the role of K+ channels in the H2O2-induced or cryo-induced cell death of mouse and bovine embryos. Mouse and bovine two-cell stage embryos (2-cells) exposed to H2O2 for 4 h suffered from apoptosis. The 2-cells showed positive TUNEL staining. Treatment with high concentration of KCl (25mM) inhibited H2O2-induced apoptosis of 2-cells by 19%. Cryo-induced death in bovine blastocysts showed positive TUNEL staining only in the cells near the plasma membrane. Cryoprotectant supplemented with 25 mM KCl reduced apoptosis slightly compared to cryoprotectant supplemented with 5 mM KCl. However, the combination of antioxidants (β-mercaptoethanol) with 25 mM KCl significantly decreased the rate of H2O2-induced and cryo-induced apoptosis compared to treatments with only antioxidants or 25 mM KCl. These results show that blockage of K+ channel efflux for a short-time reduces H2O2- and cryo-induced apoptosis in mouse and bovine embryos. Our findings suggest that apoptosis in mouse and bovine embryos might be controlled by modulation of K+ channels which are highly expressed in a given cell type.
NiO catalysts were successfully coated onto FeCrAl metal alloy foam as a catalyst support via a dip-coating method. To demonstrate the optimum amount of NiO catalyst on the FeCrAl metal alloy foam, the molar concentration of the Ni precursor in a coating solution was controlled, with five different amounts of 0.4 M, 0.6 M, 0.8 M, 1.0 M, and 1.2 M for a dip-coating process. The structural, morphological, and chemical bonding properties of the NiO-catalyst-coated FeCrAl metal alloy foam samples were assessed by means of field-emission scanning electron microscopy(FESEM), scanning electron microscopy-energy dispersive spectroscopy(SEM-EDS), X-ray diffraction(XRD), and X-ray photoelectron spectroscopy(XPS). In particular, when the FeCrAl metal alloy foam samples were coated using a coating solution with a 0.8 M Ni precursor, well-dispersed NiO catalysts on the FeCrAl metal alloy foam compared to the other samples were confirmed. Also, the XPS results exhibited the chemical bonding states of the NiO phases and the FeCrAl metal alloy foam. The results showed that a dip-coating method is one of best ways to coat well-dispersed NiO catalysts onto FeCrAl metal alloy foam.