세공경 1.5μm인 SPG (Shirasu porous glass) 막이 설치된 실험실 규모의 막유화 장치를 사용하여 구(球) 형상의 단분산 실리카 마이크로겔을 제조하기 위한 막유화 공정변수의 최적조건을 결정하였다. 막유화의 공정변수로는 분산상 내규산소다의 농도, 분산상 압력, 연속상에 대한 분산상의 비율, 연속상 내 유화제의 농도, 연속상의 교반속도로 설정하고, 이들 변수가 제조된 실리카 마이크로겔의 입자 크기와 분포에 미치는 영향을 검토하였다. 막유화의 공정변수들 중에서 연속상에 대한 분산상의 비율, 분산상 압력 및 분산상 내 규산소다의 농도가 증가할수록 겔 입자의 크기가 증가하였다. 반면 유화제의 농도와 연속상의 교반속도가 증가할수록 겔 입자의 크기가 감소하였다. 막유화의 공정변수 조절을 통해 최종적으로 평균 입자 크기가 6 μm인 입도분포가 균일한 구 형상의 실리카 마이크로겔을 제조할 수 있었다.
Poly(vinyl chloride) (PVC) 주사슬과 poly(hydroxyethyl acrylate) (PHEA) 곁사슬로 구성된 빗살모양의 PVC-g-PHEA 공중합체를 원자전달라디칼 중합을 통해 합성하였다. 이렇게 합성된 PVC-g-PHEA의 OH 그룹과 이미다졸 디카르복실릭산 (IDA)의 COOH 그룹과의 에스테르 반응에 의하여 가교된 전해질막을 제조하였다. 인산(PA)을 도핑하여 이미다졸-인산 착체를 형성한 결과, PA함량이 증가함에 따라 고분자 전해질막의 수소 이온 전도도가 증가하였다. 특히 100도 비가습 조건에서 수소 이온 전도도는 최대 0.011 S/cm까지 증가하였다. 만능 재료 시험기(UTM) 측정결과, 제조된 PVC-g-PHEA/IDA/PA 전해질막은 575 MPa의 높은 Young 모듈러스 및 기계적 강도를 보여주었다. 열분석 결과(TGA) 전해질막은 200℃까지 열적으로 안정함을 확인하였다.
H₂S adsorption characteristics of adsorbent made by sewage sludge were investigated. The manufacturing method of adsorbent used in this experiment is to mix sewage sludge, waste lime, the high-alumina cement, NaHCO₃, and activated carbon. For analyses of the manufactured adsorbent, various methods such as scanning electron microscope (SEM), measurements of BET surface area and pore volume were adopted. As operating variables, adsorption temperature (25~45 ℃), H₂S concentration (2.48~31.62 ㎎/L) and the kinds of adsorbent were applied. As major adsorption characteristics, adsorption rate and adsorption equilibrium capacity were measured by using batch type experimental apparatus. The experimental result showed that the BET surface area of the calcinated sewage sludge was 83.3 ㎡/g, which indicates 4 times higher than that of non calcination and the BET surface area of adsorbent made by sewage sludge mixing with various by-products ranged over 265 to 286 ㎡/g. It was also found that the H₂S adsorption equilibrium capacity of adsorbent made by sewage sludge decreases with increasing temperature, but increases with increasing H₂S concentration. Through the evaluation of adsorption isotherm model, it was found that H₂S adsorption isotherm for adsorbent made by sewage sludge can be expressed well by Langmuir and Freundlich isotherm equation.
The goal of this study is to propose the effective method of investigating the injurious factors and making improved plans that prevents the workers against musculoskeletal disorders at an diesel engine manufacturing company and the same business field with similar working conditions and process. A questionnaire were adopted to analyze the symptoms of workers' musculoskeletal disorders, and an ergonomic assessment method such as RULA, OWAS were performed to find out harmful factors of workplace and working posture. Based on the result of the evaluation, to enhance the working environment, improvement of worktable, working space, tools, and outfit was suggested, and induction of mechanical system was also suggested. It can be concluded that the method and process described in this paper could be helpful for diagnosing the musculoskeletal disorders and making improvement plans to the diesel engine fuel injection system manufacturing company and the same business field with similar working conditions and process.
The goal of this study is to propose the effective method of investigating the injurious factors and make improvement plans that prevents the workers against musculoskeletal disorders at plastic product companies and the same business field with similar working conditions and process. A questionnaire are adopted to analyze the symptoms of workers' musculoskeletal disorders, and ergonomic assessment methods such as RULA, OWAS are performed to find out harmful factors of workplace and working posture. Based on the result of the evaluation, to enhance the working environment, improvement of worktable, working space, tools, and outfit was suggested, and induction of mechanical system was also suggested. It can be concluded that the method and process described in this paper could be helpful for diagnosing the musculoskeletal disorders risk factors and making improvement plans to the plastic product companies and the same business field with similar working conditions and process.
The purpose of this paper is to give information on e-CPC implementation in the manufacturing industry by studying and analyzing a small and medium sized manufacturing company. After analyzing Various factors on J’s e-CPC implementation such as environmen
This paper presents a novel single-step method to prepare the Ag nanometallic particle dispersed fluid (nanofluid) by electrical explosion of wire in liquid, deionized water (DI water). X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM) were used to investigate the characteristics of the Ag nanofluids. Zeta potential was also used to measure the dispersion properties of the as-prepared Ag nanofluid. Pure Ag phase was detected in the nanofluids using water. FE-SEM analysis shows that the size of the particles formed in DI water was about 88 nm and Zeta potential value was about -43.68 without any physical and chemical treatments. Thermal conductivity of the as-prepared Ag particle dispersed nanofluid shows much higher value than that of pure DI water.
Eu red phosphor was prepared by microwave synthesis. The crystal phase, particle morphology, and luminescent properties were characterized by XRD, SEM, and spectrofluorometer, respectively. The prepared :Eu particles had good crystallinity and strong red emission under ultravioletet excitation. The crystallite size increased with calcination temperature and satuarated at . The primary particle size initially formed was varied from 30 to 450 nm with microwave-irradiation (MI) time. It was found that the emission intensity of :Eu phosphor strongly depends on the MI time. In terms of the emission intensity, it was recommended that the MI time should be less than 15 min. The emission intensity of :Eu phosphor prepared by microwave syntehsis strongly depended on the crystallite size of which an optimal size range was 50-60 nm
A visible-light photoactive photocatalyst was synthesized successfully by means of cogrinding of anatase- in ambient, followed by heat-treatment at in air environment. In general, it is well known that the grinding-operation induces phase transformation of a- to rutile . This study investigates the influence of the amount of gas on the phase transformation rate of a- and enhancement of visible-light photocatalytic activity, and also examines the relation between the photocatalytic activity and the period of grinding time. The phase transformation rate of a- to rutile is retarded with the amount of NH3 injected. And the visible-light photocatalytic activity of samples, was more closely related to the period of grinding time than amount injected, which means that the doping amount of nitrogen into more effective to mechanical energy than amount injected. XRD, XPS, FT-IR, UV-vis, Specific surface area (SSA), NOx decomposition techniques are employed to verify above results more clearly.
The calcination and hydrogen-reduction behavior of Fe- and Ni-nitrate have been investigated. /NiO composite powders were prepared by chemical solution mixing of Fe- and Ni-nitrate and calcination at for 2 h. The calcined powders were hydrogen-reduced at for 30 min. The calcination and hydrogen-reduction behavior of Fe- and Ni-nitrate were analyzed by TG in air and hydrogen atmosphere, respectively. TG and XRD analysis for hydrogen-reduced powders revealed that the /NiO phase transformed to phase at the temperature of . The activation energy for the hydrogen reduction, evaluated by Kissinger method, was measured as 83.0 kJ/mol.
Mn-substituted BiFeO3(BFO) thin films were prepared by r.f. magnetron sputtering under an Ar/O2mixture of various deposition pressures at room temperature. The effects of the deposition pressure andannealing temperature on the crystallization and electrical properties of BFO films were investigated. X-raydiffraction patterns revealed that BFO films were crystallized for films annealed above 500oC. BFO filmsannealed at 550oC for 5 min in N2 atmosphere exhibited the crystallized perovskite phase. The (Fe+Mn)/Biratio decreased with an increase in the deposition pressure due to the difference of sputtering yield. The grainsize and surface roughness of films increased with an increase in the deposition pressure. The dielectricconstant of BFO films prepared at various conditions shows 127~187at 1kHz. The leakage current densityof BFO films annealed at 500oC was approximately two orders of magnitude lower than that of 550oC. Theleakage current density of the BFO films deposited at 10~30m Torr was about 5×10-6~3×10-2A/cm2 at 100kV/cm. Due to the high leakage current, saturated P-E curves were not obtained in BFO films. BFO film annealedat 500oC exhibited remnant polarization(2Pr) of 26.4µC/cm2 at 470kV/cm.
The electrocatalytic behavior of the PtCo catalyst supported on the multi-walled carbon nanotubes (MWNTs) has been evaluated and compared with commercial Pt/C catalyst in a polymer electrolyte membrane fuel cell(PEMFC). A PtCo/MWNTs electrocatalyst with a Pt:Co atomic ratio of 79:21 was synthesized and applied to a cathode of PEMFC. The structure and morphology of the synthesized PtCo/MWNTs electrocatalysts were characterized by X-ray diffraction and transmission electron microscopy. As a result of the X-ray studies, the crystal structure of a PtCo particle was determined to be a face-centered cubic(FCC) that was the same as the platinum structure. The particle size of PtCo in PtCo/MWNTs and Pt in Pt/C were 2.0 nm and 2.7 nm, respectively, which were calculated by Scherrer's formula from X-ray diffraction data. As a result we concluded that the specific surface activity of PtCo/MWNTs is superior to Pt/C's activity because of its smaller particle size. From the electrochemical impedance measurement, the membrane electrode assembly(MEA) fabricated with PtCo/MWNTs showed smaller anodic and cathodic activation losses than the MEA with Pt/C, although ohmic loss was the same as Pt/C. Finally, from the evaluation of cyclic voltammetry(CV), the unit cell using PtCo/MWNTs as the cathode electrocatalyst showed slightly higher fuel cell performance than the cell with a commercial Pt/C electrocatalyst.
천연조미소재 개발을 위하여 고압/효소분해 시스템에서 멸치 단백질의 분해 품질특성을 탐색한 결과, 최적 조건은 효소농도 0.6%, 온도 50oC, 처리시간 24시간 및 압력 50 MPa로 확인되었다. 멸치 단백질의 처리방법에 따른 품질특성을 비교한 결과, 최적조건하에서 고압/효소 처리한 멸치 가수분해물의 품질특성이 가열추출물인 대조구에 비하여 2.8배, 2배, 1.4배 증가하여 고압/효소 처리에 의한 단백질 가수분해물 생산은 가열추출법이나 고압반응에 비하여 효율적인 방법으로 나타났다. 효소종류에 따른 분해력은 복합효소로 가수분해한 경우 상업효소에 비하여 큰 증가율을 나타내어 복합효소의 분해력이 상업효소에 비하여 우수하였다. 고압/효소 처리 후의 멸치 가수분해물은 정미성 아미노산으로 알려져 있는 glutamic acid, glycine, arginine 및 alanine 등의 함량이 대조구나 압력 처리구의 유리아미노산 함량에 비하여 증가하였다. 결론적으로 고압/효소분해 처리공정은 멸치 단백질의 효과적 분해와 정미성 아미노산 생산에 효율적인 기술임을 확인하였다.
딸기 분말의 대체량을 0-6%로 달리하여 쿠키를 제조한 후 물리화학적 품질특성을 측정하고 각 특성사이의 상관관계를 살펴보았다. 딸기 분말 대체량이 증가함에 따라 반죽의 pH와 쿠키의 경도는 유의적으로 감소하였다(p<0.05). 반죽의 수분함량은 딸기 분말의 대체에 따라 유의적인 차이를 나타내지는 않았지만 평균 수분함량은 증가하는 경향을 나타내었다. 딸기 분말의 대체량이 증가할수록 명도와 황색도는 유의적으로 감소한 반면 적색도는 증가하였다(p<0.05). 퍼짐성 지수 역시 유의적인 증가를 나타내었다(p<0.05). 한편 상관분석결과 딸기 분말 대체수준은 모든 물리화학적 품질특성과 유의적인 상관관계를 나타내었다. 또한 반죽의 수분함량과 퍼짐성 지수 사이에 양의 유의적 상관관계가 관측되었다(p<0.05).
Carbon nanotubes (CNT) were used as a catalyst support where catalytically active Pd and Pt metalparticles decorated the outside of the external CNT walls. In this study, Pd and Pt nanoparticles supportedon HNO3-treated CNT were prepared by microwave-assisted heating of the polyol process using PdCl2 andH2PtCl6•6H2O precursors, respectively, and were then characterized by SEM, TEM, and Raman. Ramanspectroscopy showed that the acid treated CNT had a higher intensity ratio of ID/IG compared to that of non-treated CNT, indicating the formation of defects or functional groups on CNT after chemical oxidation.Microwave irradiation for total two minutes resulted in the formation of Pd and Pt nanoparticles on the acidtreated CNT. The sizes of Pd and Pt nanoparticles were found to be less than 10nm and 3nm, respectively.Furthermore, the SnO2 films doped with CNT decorated by Pd and Pt nanoparticles were prepared, and thenthe NO2 gas response of these sensor films was evaluated under 1~5ppm NO2 concentration at 200oC. It wasfound that the sensing property of the SnO2 film sensor on NO2 gas was greatly improved by the addition ofCNT-supported Pd and Pt nanoparticles.
Austenitic oxide-dispersion-strengthened (ODS) stainless steel was fabricated using a wet mixing process without a mechanical milling in order to reduce contaminations of impurities during their fabrication process. Solution of yttrium nitrate was dried after a wet mixing with 316L stainless steel powder. Carbon and oxygen contents were effectively reduced by this wet processing. Microstructural analysis showed that coarse yttrium silicates of about 150 nm were formed in austenitic ODS steels with a silicon content of about 0.8 wt%. Wet-processed austenitic ODS steel without silicon showed higher yield strength by the presence of finer oxide of about 20 nm.
The effects of thermal treatment conditions on ADU (ammonium diuranate) prepared by SOL-GEL method, so-called GSP (Gel supported precipitation) process, were investigated for kernel preparation. In this study, ADU compound particles were calcined to particles in air and Ar atmospheres, and these particles were reduced and sintered in 4%-/Ar. During the thermal calcining treatment in air, ADU compound was slightly decomposed, and then converted to phases at . At , the phase appeared together with . After sintering of theses particles, the uranium oxide phases were reduced to a stoichiometric . As a result of the calcining treatment in Ar, more reduced-form of uranium oxide was observed than that treated in air atmosphere by XRD analysis. The final phases of these particles were estimated as a mixture of and .