검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 49

        7.
        2023.11 구독 인증기관·개인회원 무료
        Dry active wastes (DAWs) are combustible waste generated during the operation and decommissioning of nuclear facilities, and are known to be generated in the amount of approximately 10,000 to 40,000 drums (based on 200 L) per unit. It consists of various types of protective clothing, paper, and plastic bags, and is stored in radioactive waste storage facilities. Therefore, reducing the volume of DAWs is an important issue in order to reduce storage costs and utilize the limited space of waste storage facilities. Heat treatment such as incineration can dramatically reduce the volume of waste, but as the waste is thermally decomposed, CO2, a global warming gas, is generated and there is a risk of emissions of harmful gases including radionuclides. Therefore, a heat treatment process that minimizes the generation of CO2 and harmful gases is necessary. One of the alternatives to incineration is to carbonize DAWs, dispose of carbonized materials below the release standard as non-radioactive waste, and selectively separate and stabilize inorganic components, including radionuclides, from carbonized DAWs. In this study, 13 types of DAWs generated from nuclear power plants were selected and their thermal decomposition characteristics were investigated to design a heat treatment process that replaces incineration. As a result of TGA analysis, the temperature at which thermal decomposition of each waste begins is 260-300°C for cotton, 320-330°C for paper, 315-420°C for synthetic fiber, 350°C for latex gloves. The mass of most samples decreased to less than 1 % of the initial weight after heat treatment, and dust suit and latex gloves had residues of 13.83% and 13.71% of the initial mass, respectively. The metal components of the residue produced after heat treatment of the sample were analyzed by EDS. According to the EDS results, cotton contains Ca and Al, paper contains Ca, Al and Si, synthetic fiber contains Ca, Cu and Ti, latex gloves contain Ca and Mg. Additionally, ICP analysis was performed to quantify the inorganic components. These results are expected to be applicable to the processing of DAW generated at nuclear facilities in the future.
        8.
        2023.11 구독 인증기관·개인회원 무료
        The HADES (High-level rAdiowaste Disposal Evaluation Simulator) was developed by the Nuclear Fuel Cycle & Nonproliferation (NFC) laboratory at Seoul National University (SNU), based on the MOOSE Framework developed by the Idaho National Laboratory (INL). As an application of the MOOSE Framework, the HADES incorporates not only basic MOOSE functions, such as multi-physics analysis using Finite Element Method (FEM) and various solvers, but also additional functions for estimating the performance assessment of Deep Geological Repositories (DGR). However, since the MOOSE Framework does not have complex mesh generation and data analyzing capabilities, the HADES has been developed to incorporate these missing functions. In this study, although the Gmsh, finite element mesh generation software, and Paraview, finite element analysis software, were used, other applications can be utilized as well. The objectives of HADES are as follows: (i) assessment of the performance of a Spent Nuclear Fuel (SNF) disposal system concerning Thermal-Hydraulic-Mechanical-Chemical (THMC) aspects; (ii) Evaluation of the integrity of the Engineered Barrier System (EBS) of both general and high-efficiency design perspective; (iii) Collaboration with other researchers to evaluate the disposal system using an open-source approach. To achieve these objectives, performance assessments of the various disposal systems and BMTs (BenchMark Test), conducted as part of the DECOVALEX projects, were studied regarding TH behavior. Additionally, integrity assessments of various DGR systems based on thermal criteria were carried out. According to the results, HADES showed very reasonable results, such as evolutions and distributions of temperature and degree of saturation, when compared to validated code such as TOUGH-FLAC, ROCMAS, and OGS (OpenGeoSys). The calculated data are within the range of estimated results from existed code. Furthermore, the first version of the code, which can estimate the TH behavior, has been prepared to share the contents using Git software, a free and open-source distribution system.
        9.
        2023.05 구독 인증기관·개인회원 무료
        Aluminum’s exceptional properties, such as its high strength-to-weight ratio, excellent thermal conductivity, corrosion resistance, and low neutron absorption cross-section, make it an ideal material for diverse nuclear industry applications, including aluminum plating for the building envelope of nuclear power plants. However, plating aluminum presents challenges due to its high reactivity with oxygen and moisture, thus, complicating the process in the absence of controlled environments. Plating under an inert atmosphere is often used as an alternative. However, maintaining an inert atmosphere can be expensive and presents an economic challenge. To address these challenges, an innovative approach is introduced by using deep eutectic solvents (DES) as a substitute for traditional aqueous electrolytes due to the high solubility of metal salts, and wide electrochemical window. In addition, DESs offer the benefits of low toxicity, low flammability, and environmentally friendly, which makes DESs candidates for industrial-scale applications. In this study, we employed an AlCl3-Urea DES as the electrolyte and investigated its potential for producing aluminum coatings on copper substrates under controlled conditions, for example, current density, deposition duration, and temperature. A decane protective layer, non-polar molecular, has been used to shield the AlCl3-Urea electrolyte from the air during the electrodeposition process. The electrodeposition was successful after being left in the air for two weeks. This study presents a promising and innovative approach to optimizing aluminum electrodeposition using deep eutectic solvents, with potential applications in various areas of the nuclear industry, including fuel cladding, waste encapsulation, and radiation shielding.
        10.
        2023.05 구독 인증기관·개인회원 무료
        Chemical environments of near-field (Engineered barrier and surrounded host rock) can influence performance of a deep geological repository. The chemical environments of near-field change as time evolves eventually reaching a steady state. During the construction of a deep geological repository, O2 will be introduced to the deep geological repository. The O2 can cause corrosion of Cu canisters, and it is important predicting remaining O2 concentration in the near-field. The remaining O2 concentration in the near field can be governed by the following two reactions: oxidation of Cu(I) from oxidation of Cu and oxidation of pyrite in bentonite and backfill materials. These oxidation reactions (Cu(I) and pyrite oxidation) can influence the performance of the deep geological repository in two ways; the first way is consuming oxidizing agents (O2) and the second way is the changing pH in the near-field and ultimately influencing on the mass transport rate of radionuclides from spent nuclear fuel (failure of canisters) to out of the engineered barrier. Hence, it is very important to know the evolution of chemical environments of near-field by the oxidation of pyrite and Cu. However, the oxidation kinetics of pyrite and Cu are different in the order of 1E7 which means the overall kinetics cannot be fully considered in the deep geological repository. Therefore, it is important to develop a simplified Cu and pyrite oxidation kinetics model based on deep geological repository conditions. Herein, eight oxidation reactions for the chemical species Cu(I) were considered to extract a simplified kinetic equation. Also, a simplified kinetics equation was used for pyrite oxidation. For future analysis, simplified chemical reactions should be combined with a Multiphysics Cu corrosion model to predict the overall lifetime of Cu canisters.
        14.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        African swine fever (ASF) is a hemorrhagic viral disease of pigs requiring laboratory diagnosis for confirmation. Though tissue and blood samples are considered optimal for ASF diagnosis, collection of these samples can be laborious, time-consuming, and pose a risk of contaminating the environment. Here, we suggest an alternative non-invasive sampling method, hair plucking, for ASF diagnosis. ASF virus was detected in plucked hair samples from experimentally infected pigs. Although the sensitivity was inferior to whole blood, the results suggest that hair plucking can be an alternative method that can also improve animal welfare.
        3,000원
        15.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to analyze how modern fashion brands practice cultural sustainability by investigating the ways they use and reinterpret traditional culture and clothing. The transmission and reinterpretation of traditional cultural elements connect the past, present, and future. These forces also lead to the development of new creativity in the fashion industry. Three brands have been selected for case studies: Danha (Korea), Mittan (Japan), and Jan Jan Van Essche (Belgium). These brands possess in-depth understanding of traditional cultural elements, including clothing, dyeing techniques, and patterns unique to various regions and minority groups. The brands all make use of traditional cultural identities whose clothing contains the historical and sentimental values of various regions and ethnic groups. The use and mixing of various cultures can be seen as the respectful preservation of global culture. Also, in contemporary fashion, the use of traditional culture plays an important role in the presentation and development of creative designs. The use of traditional handicraft techniques and the use of traditional clothing in the past convey cultural diversity to future generations; they will have a lasting influence on future fashion trends. The results of the study show that cultural sustainability in contemporary fashion has been implemented through safeguarding and respecting indigenous cultures and developing cultural elements into creative design.
        5,700원
        19.
        2018.10 구독 인증기관·개인회원 무료
        Insect peptides have been extensively studied due to beneficial effects in the treatment of infectious diseases. Melittin, a fundamental component of honeybee venom produced by European honeybee Apis mellifera, has applied to prevent various inflammatory disease and bacterial infections in human. However, the therapeutic application of melittin is limited due to its low stability, hemolytic activity and expensive manufacturing costs. In this study, we aimed to discovery unknown peptides from the Apis mellifera and evaluate its antibacterial activity against Escherichia coli KACC 10005. A total 15,853 peptide sequences were diciphered using Illumina HiSeq 2500 next-generation sequencing (NGS) platform and analyzed based on the Apis mellifera official Gene Set Version 3.2 (amel_OGSv3.2) and the Collection of Anti-Microbial Peptides (CAMPR3) database. All the peptide sequences and annotation data sets were combined and sorted by physicochemical features of antimicrobial peptides (AMPs), such as short peptide length <=50, positive charge, isoelectric point (8.0<=pl<=12), and aggregation propensity (in-vitro: <=500, in-vivo: –40<= Na4vSS <=60). Among the screened peptides, four unknown peptide candidates, named AMP1-4, were chemically synthesized and tested for antimicrobial activity in comparison with a reference peptide, melittin. Inhibition of bacterial growth was observed in the AMP4 treated group from 6 hours to 48 hours post-treatment against E. coli. These results suggest that honeybee-derived peptide sequences can be applied as natural resources to acquire novel AMPs and the peptide sequences derived parameters are enough to recognize antibacterial peptides. In addition, the selected novel peptide candidate, AMP4, has antibacterial activity.
        1 2 3