검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 120

        23.
        2022.10 구독 인증기관·개인회원 무료
        There are generally two kinds of spent filter; one is spent filter media for mainly gaseous purification such as HEPA filter, the other is spent filter cartridge for liquid purification such as CVCS BRS cartridge type filter. The spent filter cartridge from liquid purification system has been storing in special shielding space in auxiliary building in NPPs since the beginning of 2006 according to the long term storage strategy for decaying short lived radionuclide and gaining the time for selecting practical treatment technology before final packaging. The spent filter cartridges generated Kori-1 reactor vary in their sizes as in length from 913 mm to 290 mm and range in radiation level from several hundred mSv per hour to below mSv per hour . It is high time that the spent filter cartridge is treated and packaged because LILW repository in Wolsung area is operating and Kori-1 reactor is scheduled to decommission. The spent filter cartridge is one of the wet solid wastes required of solidification. It is difficult for the spent filter cartridge to solidify because of their shape, structure, physical and chemical characteristics in addition to having high radiation level. NSSC notice defines that solidification of wet solid wastes include that solid material such as spent filter is encapsulated with cement, etc. as a form of macro-encapsulation. The radioactive waste acceptance criteria describes that non-homogeneous waste having above 74,000 Bq/g such as spent filter, dry active waste should be encapsulated with qualified material. Homogeneous waste such as spent resin, sludge, concentrated waste (liquid waste evaporator bottoms), etc. should be solidified complied with requirements except that spent filter which is allowed to encapsulate. It is needed to guide to the practice of these two requirements for spent filter. The sampling and test method is different between homogeneous solidification waste form and spent filter cartridge encapsulation waste form. For example, how core sample can be taken and how void space can be measured among spent filter cartridge in encapsulation waste form. The technical evaluation report for spent filter cartridge polymer encapsulation by US NRC has been reviewed and the technical position of US NRC was identified. As a result of review, improvement fields of waste acceptance criteria for spent filters are pointed out, and the technical position of US NRC for spent filter cartridge solidification is summarized. The recommendation on improvement directions for spent filter cartridge encapsulation is suggested.
        24.
        2022.10 구독 인증기관·개인회원 무료
        The depth of geological disposal of high-level radioactive waste (HLW) varies from country to country, but it is generally considered below 300 m underground. As one of the reliable methods to understand the geological characteristics of these deep areas, the site investigation through drilling is recommended. This paper deals with multidisciplinary research that evaluates the geological characteristics of the site using deep drilling. The deep drilling is 750 m, which is higher than the planned disposal depth. Prior to drilling, literature and surface geological surveys of the target area were conducted, and during drilling, real-time measurement of excavated information for obtaining drilling information, circulating water management and chemical composition through a closed system were monitored. After drilling, field tests such as geophysical borehole logging, deep groundwater sampling, constant pressure injection test, and hydraulic fracturing test were performed. Analysis of the recovered drilling core from a geological point of view such as age dating, rock formation and structural geological analysis, and from geochemical perspectives such as concentration of major/ minor cationic elements, major anions, and trace elements along with the water quality parameters pH, DO, Ec, Eh, etc., from geothermal perspective such as thermal conductivity and coefficient of thermal expansion, from rock mechanical aspects such as physical and mechanical properties of intact rocks and joints, joint distribution, etc. Deep drilling has been completed with 2 holes for granite and 2 holes for sedimentary rocks, and further drilling for gneiss and sedimentary rocks is in progress.
        25.
        2022.05 구독 인증기관·개인회원 무료
        Several previous simulation studies using various geochemical models have been carried out in several major analogue sites. The cases are beneficial when these studies provided the possibility of testing the geochemical models to be used to describe the migration of radionuclides in a future radioactive waste repository system. It was possible to interpret the complex transport behaviour of radionuclides such as uranium and thorium in an environment. We organize major natural analogue study sites from the previous literatures that provided information on the general geochemistry of the sites, in terms of groundwater composition and mineralogy. Also, we calculated aqueous speciation and the solid phases most likely to control their solubilities. The results obtained from the previous studies and this study vary depending on the tools used and on the conceptual models followed. Also, the results differed from the actual measured concentrations of trace metals or radionuclide analogues. The results obtained from these tests identify the main mathematical limitations of available geochemical models. However, the modelling results using a geochemical code with the thermodynamic database simulated well the observed behaviour of radionuclides, especially to identify the dominant processes controlling actinide mobilization and fixation. It was a useful outcome in terms of building confidence on the current geochemical tools to predict the concentrations of radionuclide analogues once the major geochemical characteristics were known. This study allows improving specific aspects of geochemical modelling using major natural analogue sites.
        29.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pyrolysis fuel oil (PFO) is used for the manufacturing of high-purity pitch for carbon precursor due to its high carbon content, high aromaticity, and low heterogeneous element and impurity content. Pitch is commonly classified with its softening point, which is most considerable physical property affecting to various characteristics of the carbon materials based on pitch, such as electrical and thermal conductivity, mechanical strength, and pore property. Hence, the softening point should be controlled to apply pitch to produce various carbon materials for different applications. Previous studies introduce reforming process under high pressure and two step heat treatment for the synthesis of pitch with high softening point from PFO. These methods lead to a high process cost; therefore, it is necessary to develop a process to synthesize the pitch with high softening point by using energy effective process at a low temperature. In this study, waste polyethylene terephthalate (PET) was added to control the softening point of PFO-based pitch. The pitch synthesized by the heat treatment with the addition of PET showed the softening point higher than that of the pitch synthesized with only PFO. The softening point of PFObased pitch synthesized at 420 °C was 138.3 °C, while that of the pitch synthesized by adding PET under the same process conditions was 342.8 °C. It is proposed that the effect of the PET addition on the increase in the softening point was due to the radicals generated from thermal degradation of PET. The radicals from PET react with the PFO molecules to promote the polymerization and finally increase the molecular weight and softening point of the pitch. In addition, activated carbon was prepared by using the pitch synthesized by adding PET, and the results showed that the specific surface area of the activated carbon increased by the addition of PET. It is expected that the pitch synthesis method with PET addition significantly contributes to the manufacture of pitch and activated carbon.
        4,000원
        36.
        2019.06 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        Acute myocardial infarction (AMI) is considered the major cause of mortality in the world. Tremendous animal studies are performed to develop novel therapeutics, and this study aimed to induce porcine myocardial infarction model by using polyethylene terephthalate (PET). Coronary guidewire was placed in left anterior descending artery (LAD). The balloon angioplasty catheter was inserted at the back of the PET. The balloon catheter was carefully pushed forward, until the balloon marker was located in mid-LAD. Coronary angiography was performed pre- and post-occlusion at 28 days by C-arm. Histologic analysis of heart tissue was performed 28 days after inducing AMI. Thirty three pigs were anesthetized and underwent percutaneous coronary catheterization. All pigs were successfully embolized in mid-LAD by PET. Fifteen pigs died due to ventricular fibrillation during post-anesthetic recovery time, and overall experiment mortality was 45.5%. In 2,3,5- triphenyl tetrazolium chloride staining, gross finding of the ischemic heart lesion showed firm and white area of infarction associated with the apex and left ventricular posterior wall. Infarct on H&E-stained sections demonstrated a region without myocytes and rich with cardiomyocyte with atypical nuclei. Successful induction of AMI by using PET may provide the pathophysiological information of ischemic heart disease and improvement of therapy development for AMI.
        4,000원
        37.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Chamaecyparis obtusa is one of the economical conifers planted in Korea due to its good quality timber and wood characteristics. Individuals of C. obtusa containing high terpenes (HT) and low terpenes (LT) were selected for by colorimetric method. The HT of C. obtusa was delayed in wilting against various abiotic stresses compared to the LT plants. The HT group exposed to UV did not significant influence the chlorophyll content, and the chlorophyll value was higher in the HT group than the LT group. Also, chilling treatment (5℃) did not significant influence on the chlorophyll content. However treatment at -4℃ showed relatively low chlorophyll content in the LT group than the HT group. Plants exposure to high temperature was not a difference between the HT and the LT group. However, treatment at 38℃ influenced the chlorophyll content that was increased exposure time-dependently. In salt treatments, chlorophyll in the HT group was lower at high concentrations (300 and 500 mM) of NaCl. However, chlorophyll content increased to slightly in treatment time-dependently, which is 6.7% to 40%. H2O2 treatment has been a negative effect on the chlorophyll content in the HT group. All concentration of H2O2 decreased the chlorophyll content of 5% to 35%. Plants containing high terpenoids were resisted against some abiotic stress such as salt and H2O2. Our results implied that terpenoids could cause various abiotic stress resistance. These results could be utilized for efficient management and biomass production during forest silvicultures.
        4,000원
        38.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Stem and root of elm trees have used as traditional medical materials, but there is little information on the distribution and resources of habitats. Korean native growing Ulmus spp. (U. davidiana var. Japonica, U. parvifolia, U. davidiana, and U. macrocarpa) genetic resources studied through The National Forest Inventory of Korea data and field survey. The distributions of U. davidiana var. japonica according to elevation distributed evenly. Both U. parvifolia and U. davidiana were inhabited mostly at less than 200 m of altitude. Each Ulmaceae species widely were distributed nationwide, but a dominant species was different depending on locals. It observed that Ulmaceae inhabits mainly in steep slopes of 31-45 degrees. Most of the habitats regenerated by natural seeding and the most abundant species were a codominant tree. Distribution of trees in U davidiana var. japonica was 7 m-13 m, and in young U. parvifolia and U. macrocarpa, more than 25% of young trees less than 7 m observed. The distribution of the diameter of breast height of the U. davidiana var. japonica was 46.4% for 11-20 cm, 52.6% for 11-20 cm in U. parvifolia. The average T/R ratio was 0.83, and the mean weight ratio of root bark was 62%. As the results of this study, the domestic Ulmaceae biomassare very small. It is difficult to harvest in that the habitat on the slope. Thus, it is too hard to develop functional materials using biomass at present. Therefore, it is necessary to develop technology for the selection and propagation of elite trees of Ulmaceae.
        4,200원
        1 2 3 4 5