검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,254

        141.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Busulfan is the most commonly used drug for preconditioning during the transplantation of hematopoietic stem cells and male germ cells. Here, we describe side effects of high doses of busulfan in male mongrel dogs. Busulfan was intravenously administered to three groups of dogs at doses of 10, 15, and 17.5 mg/kg body weight. The total white blood cell, neutrophil, eosinophil, lymphocyte, monocyte, and platelet counts steadily reduced in a dose-dependent manner following busulfan treatment. The white blood cell, neutrophil, and monocyte counts recovered after 6 weeks of busulfan treatment, however, the eosinophil, lymphocyte, and platelet counts remained unaltered. Additionally, there was one fatality in the each of the groups that were administered 15 and 17.5 mg/kg busulfan. The gross lesions included severe hemorrhage in the stomach, intestinal tracts, mesentery and urinary bladder. Microscopic investigation revealed severe pulmonary edema and hemorrhage in the lungs, and severe multifocal to coalescing transmural hemorrhage in the intestines and urinary bladder. These results indicated that treatment with busulfan at doses higher than 15 mg/kg initiates severe bleeding in the internal organs and can have fatal results.
        4,000원
        142.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to examine the extent to which influencing factors impact the transference willingness of farmers. The research method is based on the survey data on transference willingness, and the binary logistic model was used to analyze the influencing factors. The results show that the educational level, annual household income, farm labor, and farmers' understanding of land transfer policy notably influence land transfer. Based on the results, suggestions include improving farmers' social security system, improving a sound market for rural land transfer, and deepening the promotion and explanation of land-related policies.
        4,000원
        143.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 AI 기술은 하루가 다르게 빠르게 발전하고 있고, AI기술은 각 분야에서 다양하게 사용되어지고 있다. 본 논문은 예술분야에서 AI기술의 활용으로 COVID-19 상황에서 인간관계, 개인적인 이유로 지친 마음을 위 로해주는 힐링 게임을 제작하였다. 제작한 힐링게임에서는 주로 Self-help-therapy의 효과를 얻을 수 있어, 치 료자의 도움없이 이용자가 힐링게임을 통하여 일상적 이용과정에서 치유적 효과를 얻을 수 있는 것을 기대 하고 있다. 게임 리뷰 데이터를 통계 분석하여 힐링게임으로 대중들이 요구하는 부분을 수용하여 힐링게임 이 제작되었으며, 사용자는 게임 시작 전 간단한 스토리라인과 AI와 상호작용할 수 있는 간단한 대화를 통 화여 Self-help-therapy 효과를 얻을 수 있었다.
        4,000원
        144.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Natural environmental resources are considered a prospective source of microorganisms capable of producing biocatalysts with great potential in industrial areas. Arable soil fertilized with peat moss is a habitat for various microorganisms. The present research focused on the isolation and identification of hydrolase-producing bacteria that thrive at a broad temperature range. In this study, a total of 33 strains were isolated from arable soil fertilized with peat moss (Silla Garden in Busan, South Korea). The isolated bacteria were mesophiles and thermophiles with a wide temperature range. Taxonomic identification showed that the isolated strains belonged to 2 phyla, 5 families, 10 genera, and 24 species. Subsequently, the isolated strains were screened for hydrolase (amylase, lipase, and protease) activity. All isolates possessed activity of at least one enzyme and six bacterial isolates produced combined extracellular enzymes. Diversity of soil bacteria species in the present study suggest the potential of soil bacteria in the various industrial applications.
        4,000원
        145.
        2022.05 구독 인증기관·개인회원 무료
        Gamma-ray spectroscopy, which is an appropriate method to identify and quantify radionuclides, is widely utilized in radiological leakage monitoring of nuclear facilities, assay of radioactive wastes, and decontamination evaluation of post-processing such as decommissioning and remediation. For example, in the post-processing, it is conducted to verify the radioactivity level of the site before and after the work and decide to recycle or dispose the generated waste. For an accurate evaluation of gamma-ray emitting radionuclides, the measurement should be carried out near the region of interest on site, or a sample analysis should be performed in the laboratory. However, the region is inaccessible due to the safety-critical nature of nuclear facilities, and excessive radiation exposure to workers could be caused. In addition, in the case of subjects that may be contaminated inside such as pipe structures generated during decommissioning, surveying is usually done over the outside of them only, so the effectiveness of the result is limited. Thus, there is a need to develop a radiation measurement system that can be available in narrow space and can sense remotely with excellent performance. A liquid light guide (LLG), unlike typical optical fiber, is a light guide which has a liquid core. It has superior light transmissivity than any optical fiber and can be manufactured with a larger diameter. Additionally, it can deliver light with much greater intensity with very low attenuation along the length because there is no packing fraction and it has very high radiation resistant characteristics. Especially, thanks to the good transmissivity in UV-VIS wavelength, the LLG can well transmit the scintillation light signals from scintillators that have relatively short emission wavelengths, such as LaBr3:Ce and CeBr3. In this study, we developed a radiation sensor system based on a LLG for remote gamma-ray spectroscopy. We fabricated a radiation sensor with LaBr3:Ce scintillator and LLG, and acquired energy spectra of Cs-137 and Co-60 remotely. Furthermore, the results of gamma-ray spectroscopy using different lengths of LLG were compared with those obtained without LLG. Energy resolutions were estimated as 7.67%, 4.90%, and 4.81% at 662, 1,173, and 1,332 keV, respectively for 1 m long LLG, which shows similar values of a general NaI(Tl) scintillator. With 3 m long LLG, the energy resolutions were 7.92%, 5.48%, and 5.07% for 662, 1,173, and 1,332 keV gamma-rays, respectively.
        146.
        2022.05 구독 인증기관·개인회원 무료
        In this study, the positions of Cs-137 gamma ray source are estimated from the plastic scintillating fiber bundle sensor with length of 5 m, using machine learning data analysis. Seven strands of plastic scintillating fibers are bundled by black shrink tube and two photomultiplier tubes are used as a gamma ray sensing and light measuring devices, respectively. The dose rate of Cs-137 used in this study is 6 μSv·h−1. For the machine learning modeling, Keras framework in a Python environment is used. The algorithm chosen to construct machine learning model is regression with 15,000 number of nodes in each hidden layer. The pulse-shaped signals measured by photomultiplier tubes are saved as discrete digits and each pulse data consists of 1,024 number of them. Measurements are conducted separately to create machine learning data used in training and test processes. Measurement times were different for obtaining training and test data which were 1 minute and 5 seconds, respectively. It is because sufficient number of data are needed in case of training data, while the measurement time of test data implies the actual measuring time. The machine learning model is designated to estimate the source positions using the information about time difference of the pulses which are created simultaneously by the interaction of gamma ray and plastic scintillating fiber sensor. To evaluate whether the double-trained machine learning model shows enhancement in accuracy of source position estimation, the reference model is constructed using training data with one-time learning process. The double-trained machine learning model is designed to construct first model and create a second training data using the training error and predetermined coefficient. The second training data are used to construct a final model. Both reference model and double-trained models constructed with different coefficients are evaluated with test data. The evaluation result shows that the average values calculated for all measured position in each model are different from 7.21 to 1.44 cm. As a result, by constructing the double-trained machine learning model, the final accuracy shows 80% of improvement ratio. Further study will be conducted to evaluate whether the double-trained machine learning model is applicable to other data obtained from measurement of gamma ray sources with different energy and set a methodology to find optimal coefficient.
        147.
        2022.05 구독 인증기관·개인회원 무료
        Concrete is one of the largest wastes, by volume, generated during the decommissioning of nuclear facilities, which significantly influences the projected costs for the disposal of decommissioning wastes. Concrete consists of aggregates and a cement binder. In radioactive concrete, the radioisotopes are mainly associated with the cement component. If the radioactive isotope can be separated from the concrete to below the clearance criteria, the volume of radioactive concrete waste could be reduced effectively. We were studied to separate the radioactive materials from the concrete by using the thermomechanical and chemical treatment processes, sequentially. From the study, separated aggregate could be treated to achieve the clearance level. However, these processes generate a large volume of secondary acidic radioactive wastewater, which might be a critical problem to reduce the volume of radioactive concrete waste. In this research, separating the 137Cs and 90Sr from dissolved concrete wastewater to below the discharge criteria by precipitation method, it would be released to the environment under industrial waste guidelines. The experiments were conducted to using a simulated radioactive wastewater, formed by the dissolution of concrete within HCl, which was spiking the 137Cs and 90Sr, respectively. In addition, we applied the chemical precipitation methods with wastewater, using ferrocyanide for 137Cs and BaSO4 coprecipitation for 90Sr. As a result, targeted radionuclides could be removed to the discharge level (137Cs: 0.05 Bq·ml−1, 90Sr: 0.02 Bq·ml−1) by precipitation method. Therefore, it could reduce the secondary wastewater effectively by precipitation method and enhance the additional volume reduction for radioactive concrete waste.
        148.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The bacterial soft-rot disease is one of the most critical diseases in vegetables such as Chinese cabbage. The researchers isolated two bacteria (Pseudomonas kribbensis and Pantoea vagans) from diseased tissue samples of Chinese cabbages and confirmed them as being the strains that cause soft-rot disease. Lactic-acid bacteria (LAB), were screened and used to control soft-rot disease bacteria. The researchers tested the treatments with hypochlorous acid water (HAW) and LAB supernatant to control soft-rot disease bacteria. The tests confirmed that treatments with the HAW (over 120 ppm) or LAB (Lactobacillus plantarum PL203) culture supernatants (0.5 mL) completely controlled both P. kribbensis and P. vagans.
        4,000원
        156.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To date, the development of anticancer drugs has been conducted using two-dimensional (2D) cell culture systems. However, since cancer cells in the body are generated and developed in three-dimensional (3D) microenvironments, the use of 2D anticancer drug screening can make it difficult to accurately evaluate the anticancer effects of drug candidates. Therefore, as a step towards developing a cancer cellfriendly 3D microenvironment based on a combination of vinylsulfone-functionalized polyethylene glycol (PEG-VS) with dicysteine-containing crosslinker peptides with an intervening matrix metalloproteinase (MMP)-specific cleavage site, the types of MMPs secreted from human hepatocarcinoma HepG2 cells, a representative cancer cell, were analyzed transcriptionally and translationally. MMP3 was confirmed to be the most highly expressed protease secreted by HepG2 cells. This knowledge will be important in the design of a crosslinker necessary for the construction of PEG-based hydrogels customized for the 3D culture of HepG2 cells.
        4,000원
        157.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Parthenogenesis is maternally uniparental reproduction through the embryonic development of oocytes without fertilization. Artificial activation of mature oocytes could generate homozygous haploid embryos with the extrusion of the second polar body. However, the haploid embryos showed low embryo development in preimplantation embryos. In this study, we investigated whether the electronic fusion of the haploid embryos could enhance embryo development and ESC establishment in mice. Haploid embryos showed the developmental delay from 4-cell to the blastocyst stage. The haploid blastomeres of the 2-cell stage were fused electronically, resulting in that the fused embryos showed a significantly higher rate of blastocysts compared to non-fused haploid embryos (55% vs. 37%). Further, the embryonic stem cells (ESCs) derived from the fused embryos were confirmed to be diploid. The rate of ESC establishment in fused embryos was significantly higher compared to non-fused ones. Based on the results, we concluded that the electronic fusion of haploid embryos could be efficient to generate homozygous ESCs.
        4,000원
        158.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In vivo oocytes grow and mature in ovarian follicles whereas oocytes are matured in vitro in plastic culture dishes with a hard surface. In vivo oocytes show a superior developmental ability to in vitro counterparts, indicating suboptimal environments of in vitro culture. This study aimed to evaluate the influence of an agarose matrix as a culture substrate during in vitro maturation (IVM) on the development of pig oocytes derived from small antral follicles (SAFs). Cumulusoocyte complexes (COCs) retrieved from SAFs were grown in a plastic culture dish without an agarose matrix and then cultured for maturation in a plastic dish coated without (control) or with a 1% or 2% (w/v) agarose hydrogel. Then, the effect of the soft agarose matrix on oocyte maturation and embryonic development was assessed by analyzing intra-oocyte contents of glutathione (GSH) and reactive oxygen species (ROS), expression of VEGFA, HIF1A , and PFKP genes, and blastocyst formation after parthenogenesis. IVM of pig COCs on a 1% (w/v) agarose matrix showed a significantly higher blastocyst formation, intra-oocyte GSH contents, and transcript abundance of VEGFA. Moreover, a significantly lower intra-oocyte ROS content was detected in oocytes matured on the 1% and 2% (w/v) agarose matrices than in control. Our results demonstrated that IVM of SAFs-derived pig oocytes on a soft agarose matrix enhanced developmental ability by improving the cytoplasmic maturation of oocytes through redox balancing and regulation of gene expression.
        4,000원
        159.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The prevalence of cancer in companion dogs is growing nowadays with the increasing worldwide population of domestic dogs. Since there is a less established standard of care in veterinary medicine, investigational treatments, such as the development of biomarkers can be considered as a therapeutic intervention for early diagnosis. Despite the enormous efforts that have been invested in the search of biomarkers, still, there is a need for easy detection of significant biological markers for predicting canine cancers at an early stage. In this study, we have analyzed the expression pattern of previously reported 46 canine cancer-associated candidate genes in blood specimens using real-time qPCR. We hypothesized that analysis of gene expression in blood would provide preliminary evidence of local or systemic immunogenic response which further contribute to the easy and early diagnosis of canine cancer from blood specimen as an analytical tool. The datasets included a total of 22 blood samples collected from different breeds of dogs diagnosed with cancer and five from healthy normal dogs. RT-qPCR analysis was performed by employing the SYBR Green PCR mix to assess the expression of these 46 genes in a total of 27 samples. From our result, a total of nine genes (ROS1, C1QA, CD48, IL1b, TLR2, IL2R, CHI3L1, CTSS, and TLR7) were found to be significantly up-regulated (p < 0.05 and p < 0.01) in the cancer samples compared to non-cancer samples. The relative expression level of ROS1, C1QA, CD48, IL1b, TLR2, IL2R, CHI3L1, CTSS, and TLR7 genes was 5.74, 4.78, 3.94, 2.94, 2.57, 2.53, 2.50, 2.04, and 2.57, respectively, in cancer samples compared to non-cancer samples. Thus, our results reveal several highly expressed cancer genes that can be therapeutic target genes for further testing in canine cancers.
        4,000원
        160.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A novel brown rot fungus Phaeolus schweinitzii IUM 5048 was firstly used for ethanol production. It was found that this fungus produced ethanol with various sugars, such as glucose, mannose, galactose and cellobiose at 0.28, 0.22, 0.06, and 0.22 g of ethanol per g of sugar consumed, respectively. This fungus showed relatively good ethanol production from xylose at 0.23 g of ethanol per g of sugar consumed. However, the ethanol conversion rate of arabinose was relatively low (at 0.08 g of ethanol per g sugar). P. schweinitzii was capable of producing ethanol directly from rice straw and corn stalks at 0.11 g and 0.13 g of ethanol per g of substrates, respectively, when the fungus was cultured in a basal medium supplemented with 20 g/L rice straw or corn stalks. These results suggest that P. schweinitzii can hydrolyze cellulose or hemicellulose to fermentable sugars and convert them to ethanol simultaneously under oxygen limited condition
        4,000원