검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 50

        21.
        2018.05 서비스 종료(열람 제한)
        Background : Jujube (Zizyphus jujuba. Mill) is a broad-leaved shrub belonging to the family Seagull. Its origin is India and its height is about 5 m. The flowers are gathered in two to three in May-June, with five petals and yellowish green. Leaves are alternate, egg-shaped or long egg-shaped, with clearly visible three veins. The fruit, called jujube, is an elliptical nucleus with the seed wrapped in a solid nucleus. It is 2.5 - 3.5 ㎝ in length, green at first, ripened in brown or reddish brown in September-October. Jujube uses the bud mutation to breed and spreads through grafting. Therefore, there is little difference in phenotype between cultivars. However, because of the lack of research on jujube molecular biology, there is no standard to distinguish the variety at the DNA level. In order to overcome such difficulties and to create a research foundation of jujube, we have developed molecular markers from jujube. Methods and Results : We collected 12 jujube varieties include Bogjo and extracted DNA using CTAB method. The DNA was diluted to 10 ng/㎕ and kept at -20℃. We designed the primer sets using CLC Main Workbench based on DNA InDel regions between the varieties. PCR and electrophoresis were performed to confirm the polymorphism. We designed 26 primer sets from 23 InDel regions. Eighteen of 26 primer sets amplified the amplicon from the primer screening. Eight primer sets were selected for polymorphism assays. All primer sets showed polymorphism. The domesticated cultivars were divided into two groups and the Japanese and Chinese varieties were separated. Conclusion : The InDel markers developed in this study could be good tools to differentiate the jujube cultivars cultivated in Korea.
        22.
        2018.05 서비스 종료(열람 제한)
        Background : Angelica species are representative medicinal plants and it has been used in traditional medicinal methods, especially, in the traditional Asian medicine. The Angelica species used in conventional medicine varies by country according to specific regulations, i.e. A. gigas Nakai in Korea, A. sinensis Diels in China, and A. acutiloba Kitagawa in Japan. Because of the similarity between the names among Angelica, they can be confused in the market. Methods and Results : In this study, twenty-four chloroplast insertion or deletion (cpInDel) markers were developed from chloroplast DNA of A. gigas Nakai and tested for the classification of Angelica species. Primer sets were designed from flanking sequences of the discovered InDel loci from chloroplast DNA of A. gigas Nakai using CLC Main Workbench with the following parameters : primer length = 18 - 26 bp (Opt. 23 bp); GC% = 50 - 70% (Opt. 60%); Ta = 55 - 62℃ (Opt. 58℃); product size range = 120 - 300 bp. Polymorphism and genotype analysis of 13 Angelica species were performed using the developed cpInDel markers. Conclusion : The 24 cpInDel markers developed in this study could be used for genetic diversity analysis and classification of Angelica species.
        23.
        2018.05 서비스 종료(열람 제한)
        Background : The Codonopsis genus belongs to the Campanulaceae, and it is recorded that there are four species of Codonopsis genus in Korea, such as Codonopsis lanceolata, Codonopsis pilosula, Codonopsis minima, and Codonopsis ussuriensis. C. lanceolata has been proved to be safety and efficacy, and has been widely used for medicinal and edible purposes for a long time in East Asian countries including Korea, China and Japan. However, little genetic research has been done. Methods and Results : Ten species of Codonopsis plants were collected and DNA was extracted using CTAB (cetyl trimethylammonium bromide) method. The extracted DNA was diluted to 5 ng/㎕ for the PCR (polymerase chain reaction) process. C. lanceolata genome was used to develop molecular markers by searching insertion and deletion regions (InDel) in the chloroplast sequence. The developed markers were applied to 4 individuals per Codonopsis species. PCR amplification was carried out using a denaturation at 94℃ for 30 sec, annealing at 58℃ for 30 sec and extension at 72℃ for 30 sec, repeated for 35 total cycles. The PCR products were separated in a 4% agarose gell at 100 V for 40 min. Conclusion : Using the molecular markers developed in this study, genetic diversity of Codonopsis genus was tested, and at the same time, a specific molecular marker was developed to differentiate C. lanceolata from the Codonopsis plants.
        24.
        2017.12 KCI 등재 서비스 종료(열람 제한)
        Background: Adenophora triphylla var. japonica (Regel) H. Hara shows vegetative growth with radical leaves during the first year and shows reproductive growth with cauline leaves and bolting during the second year. In addition, the shape of the plant varies within the same species. For this reason, there are limitations to classifying the species by visual examination. However, there is not sufficient genetic information or molecular tools to analyze the genetic diversity of the plant. Methods and Results: Approximately 34.59 Gbp of raw data containing 342,487,502 reads was obtained from next generation sequencing (NGS) and these reads were assembled into 357,211 scaffolds. A total of 84,106 simple sequence repeat (SSR) regions were identified and 14,133 primer sets were designed. From the designed primer sets, 95 were randomly selected and were applied to the genomic DNA which was extracted from five plants and pooled. Thirty-nine primer sets showing more than two bands were finally selected as SSR markers, and were used for the genetic relationship analysis. Conclusions: The 39 novel SSR markers developed in this study could be used for the genetic diversity analysis, variety identification, new variety development and molecular breeding of A. triphylla.
        25.
        2017.12 KCI 등재 서비스 종료(열람 제한)
        Background: Panax ginseng C. A. Meyer is wood-cultivated ginseng (WCG) in Korea which depends on an artificial forest growth method. To produce this type of ginseng, various P. ginseng cultivars can be used. To obtain a WCG similar to wild ginseng (WG), this method is usually performed in a mountain using seeds or seedlings of cultivated ginseng (CG) and WG. Recently, the WCG industry is suffering a problem in that Panax notoginseng (Burk.) F. H. Chen or Panax quinquefolium L. are being sold as WCG Korean market; These morphological similarities have created confusion among customers. Methods and Results: WCG samples were collected from five areas in Korea. After polymerase chain reaction (PCR) amplification using the primer pair labeled with fluorescence dye (FAM, NED, PET, or VIC), fragment analysis were performed. PCR products were separated by capillary electrophoresis with an ABI 3730 DNA analyzer. From the results, WCG cultivated in Korea showed very diverse genetic background. Conclusions: In this study, we tried to develop a method to discriminate between WCG, P. notoginseng or P. quinquefolium using simple sequence repeat (SSR) markers. Furthermore, we analyzed the genetic diversity of WCG collected from five cultivation areas in Korea.
        26.
        2017.12 KCI 등재 서비스 종료(열람 제한)
        Background: In the herbal medicinal industry, Angelica gigas Nakai, Angelica sinensis (Oliv.) Diels. and Angelica acutiloba (Siebold & Zucc.) Kitag. are often confused, because the roots of the three species can not be distinguished by their appearance. This confusion can cause serious side effects. In this study, we determined the origins of Angelica roots distributed in the Korean market using the simple sequence repeat (SSR) markers developed based on the A. gigas chloroplast DNA sequence. Methods and Results: We collected twenty seven A. gigas and three A. acutiloba samples from the Seoul, Daegu, and Cheongju herbal medicinal markets. Fifty sections of one collection were mixed and ground to make a powder, which was used for DNA extraction using the cetyl trimethylammonium bromide (CTAB) method. Chloroplast based SSR markers were applied to the DNA for the determination of the species. In addition, polymorphism was found in eight samples. The phylogenetic analysis showed that the A. gigas roots collected from herbal medicinal markets were clearly discriminated from A. sinensis and A. acutiloba even though they were grouped into four clusters. Conclusions: This study showed that chloroplast based SSR markers would help the discrimination of Angelica roots in the Korean herbal medicinal industry and the markers are useful to prevent confusion between Angelica roots.
        33.
        2016.10 서비스 종료(열람 제한)
        Background : Codonopsis lanceolata is a flowering perennial climber. The roots are used as medicinal materials or vegetables. C. lanceolata is distributed in India and East Asia such as China, Japan as well as Korea. Recently, demand for C. lanceolata is increasing as a healthy food. In South Korea, this plant is widely cultivated in Gangwon-do province. Although, C. lanceolata is one of the most important medicinal plants in Korea, an elite, inbred line or a variety has not been developed yet. Simple sequence repeat (SSR) marker is a powerful tool for analysis of genetic relationships. In addition, it is a useful tool for studying the non-reference plant genome, due to its even distribution throughout the genome, as well as its high polymorphism between individuals. Methods and Results : We constructed microsatellite-enrichment libraries using C. lanceolata genomic DNA, and obtained a total of 226 non-redundant contig sequences. Routine PCR was performed using gDNA as templates for the polymorphic markers screening. Finally, total 15 polymorphic SSR markers based on C. lanceolata genomic sequences were successfully developed. These markers were applied to 53 C. lanceolata collected from Korea. 103 alleles of the 15 SSR markers ranged from 3 to 19 alleles at each locus, with an average of 6.87. The average of observed heterozygosity and genetic diversity were 0.42 and 0.62, respectively. The average of polymorphism information content (PIC) value was 0.57. The genetic distance value ranged from 0.73 to 0.93, and there was no observed distinct group according to the collecting areas. Conclusion : We developed 15 novel SSR markers from C. lanceolata genomic sequences for further genetic studies. Also, we concluded that the lineage of C. lanceolata collected in Korea has not been established systematically.
        34.
        2016.10 서비스 종료(열람 제한)
        Background : In the herbal medicine market, Angelica gigas, Angelica sinensis, and Angelica acutiloba are all called "Danggui" and used confusingly. We aimed to assess the genetic diversity and relationships among 14 Angelica species collected from different global seed companies. Toward this aim we developed DNA markers to differentiate the Angelica species. Methods and Results : A total of 14 Angelica species, A. gigas, A. acutiloba, A. sinensis, A. pachycarpa, A. hendersonii, A. arguta, A. keiskei, A. atropurpurea, A. dahurica, A. genuflexa, A. tenuissima, A. archangelica, A. taiwaniana, and A. hispanica were collected. The genetic diversity of all 14 species was analyzed by using five chloroplast DNA-based simple sequence repeat (SSR) markers and employing the DNA fragment analysis method. Each primer amplified 3 - 12 bands, with an average of 6.6 bands. Based on the genetic diversity analysis, these species were classified into specific species groups. The cluster dendrogram showed that the similarity coefficients ranged from 0.77 to 1.00. Conclusions : These findings could be used for further research on cultivar development by using molecular breeding techniques and for conservation of the genetic diversity of Angelica species. The analysis of polymorphic SSRs could provide an important experimental tool for examining a range of issues in plant genetics.
        35.
        2016.10 서비스 종료(열람 제한)
        Background : Medicinal crop has been used in the traditional Asian medicinal methods. From ancient times, various kinds of medicinal crop are being cultivated in East Aisa including Korea, China and Japan. In Korea, they used a variety of medicinal plants in folk medicine and oriental medicine since ancient times. Molecular markers can be widely used in a variety of settings such as effective-loci estimation, genetic-diversity characterization, allelic-effect studies, gene-flow studies, quantitative-trait locus (QTL) mapping, and evolutionary studies. The genetic analyses of crops require large numbers of useful molecular markers for genetic or QTL identification, comparative mapping and breeding. Studying the genetic diversity and genetic relationship of crops can assist breeders. Crop genetics within a breeding program enable the economic and effective cultivar development. We tried to develop a variety of molecular markers from Angelica gigas genomic sequences for genetic studies and breeding. Methods and Results : A. gigas resources cultivated in Republic of Korea were collected. Fresh leaves were ground with liquid nitrogen and gDNA was extracted using a DNeasy Plant Mini kit (Qiagen, Valencia, CA, USA). We sequenced the whole genomes of five A. gigas accessions using Illumina HiSeq 2500 platform and identified genomic Simple Sequence Repeat (SSR) and InDel markers. DNA amplification was conducted using the PCR system (Bio-Rad T-100 Thermal Cycler). PCR products were separated by capillary electrophoresis on the ABI 3730 DNA analyzer (Applied Biosystems) and Fragment analyzer automated CE system (Advanced Analytical Technologies, Ankeny, IA, USA). Conclusion : We developed novel SSR and InDel markers from A. gigas genomic sequences for further genetic studies and breeding.
        36.
        2016.08 KCI 등재 서비스 종료(열람 제한)
        Background: In the herbal medicine market, Angelica gigas, Angelica sinensis, and Angelica acutiloba are all called "Danggui" and used confusingly. We aimed to assess the genetic diversity and relationships among 14 Angelica species collected from different global seed companies. Toward this aim we developed DNA markers to differentiate the Angelica species. Methods and Results: A total of 14 Angelica species, A. gigas, A. acutiloba, A. sinensis, A. pachycarpa, A. hendersonii, A. arguta, A. keiskei, A. atropurpurea, A. dahurica, A. genuflexa, A. tenuissima, A. archangelica, A. taiwaniana, and A. hispanica were collected. The genetic diversity of all 14 species was analyzed by using five chloroplast DNA-based simple sequence repeat (SSR) markers and employing the DNA fragment analysis method. Each primer amplified 3 - 12 bands, with an average of 6.6 bands. Based on the genetic diversity analysis, these species were classified into specific species groups. The cluster dendrogram showed that the similarity coefficients ranged from 0.77 to 1.00. Conclusions: These findings could be used for further research on cultivar development by using molecular breeding techniques and for conservation of the genetic diversity of Angelica species. The analysis of polymorphic SSRs could provide an important experimental tool for examining a range of issues in plant genetics.
        37.
        2016.08 KCI 등재 서비스 종료(열람 제한)
        Generating motion of center of mass for biped robots is a challenging issue since biped robots can easily lose balance due to limited contact area between foot and ground. In this paper, we propose force control method to generate high-speed motion of the center of mass for horizontal direction without losing balancing condition. Contact consistent multi-body dynamics of the robot is used to calculate force for horizontal direction of the center of mass considering balance. The calculated force is applied for acceleration or deceleration of the center of mass to generate high speed motion. The linear inverted pendulum model is used to estimate motion of the center of mass and the estimated motion is used to select either maximum or minimum force to stop at goal position. The proposed method is verified by experiments using 12-DOF torque controlled human sized legged robot.
        38.
        2016.05 서비스 종료(열람 제한)
        Background : Astragalus membranaceus is one of the most widely used traditional medicinal herbs in Korea. Studies on the genomic of A. membranaceus resources have not been carried out so far. The present study was carried out to discriminate A. membranaceus based on genetic diversity using genomic simple sequence repeat (SSR) markers. Methods and Results : We collected 5 A. membranaceus lines: Asung, Poongsung, Am-Jecheon, Am-Sancheong, and Am-China. One hundred mg of fresh leaves were used for genomic DNA extraction using the DNeasy plant DNA isolation kit (Qiagen GmbH, Hilden, Germany). 450,449 contigs were searched for 147,766 SSR candidate loci in this study using the MicroSAtellite identification tool (MISA). We selected 949 A. membranaceus genomic SSR markers that were showed variation for the five collections in silico screening with CLC genomics workbench program. The genetic diversity of all A. membranaceus resources was analyzed using 17 SSR markers employing the DNA fragment analysis method. Based on the genetic diversity analysis, these lines were classified into four distinct groups. Conclusion : These findings could be used for further research on cultivar development using molecular breeding techniques and for conservation of the genetic diversity of A. membranaceus. Furthermore, the markers could be used for marker-assisted selection for crop breeding.
        39.
        2016.02 KCI 등재 서비스 종료(열람 제한)
        Plant breeding requires the collection of genetically diverse genetic resources. Studies on the characteristics of Platycodon grandiflorum resources have not been carried out so far. The present study was carried out to discriminate P. grandiflorum based on morphological characteristics and genetic diversity using simple sequence repeat (SSR) markers. Methods and Results :We collected 11 P. grandiflorum cultivars: Maries II, Hakone double white, Hakone double blue, Fuji white, Fuji pink, Fuji blue, Astra white, Astra pink, Astra blue, Astra semi-double blue and Jangbaek. Analyses of the morphological characteristics of the collection were conducted for aerial parts (flower, stem and leaf) and underground parts (root). Next, the genetic diversity of all P. grandiflorum resources was analyzed using SSR markers employing the DNA fragment analysis method. We determined that the 11 P. grandiflorum cultivars analyzed could be classified by plant length, leaf number and root characteristic. Based on the genetic diversity analysis, these cultivars were classified into four distinct groups. Conclusions : These findings could be used for further research on cultivar development using molecular breeding techniques and for conservation of the genetic diversity of P. grandiflorum. Moreover, the markers could be used for genetic mapping of the plant and marker-assisted selection for crop breeding.
        1 2 3