검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 124

        21.
        2019.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Hole carrier selective MoOx film is obtained by atomic layer deposition(ALD) using molybdenum hexacarbonyl[Mo(CO)6] as precursor and ozone(O3) oxidant. The growth rate is about 0.036 nm/cycle at 200 g/Nm of ozone concentration and the thickness of interfacial oxide is about 2 nm. The measured band gap and work function of the MoOx film grown by ALD are 3.25 eV and 8 eV, respectively. X-ray photoelectron spectroscopy(XPS) result shows that the Mo6+ state is dominant in the MoOx thin film. In the case of ALD-MoOx grown on Si wafer, the ozone concentration does not affect the passivation performance in the as-deposited state. But, the implied open-circuit voltage increases from 576 oC to 620 oC at 250 g/Nm after post-deposition annealing at 350 oC in a forming gas ambient. Instead of using a p-type amorphous silicon layer, high work function MoOx films as hole selective contact are applied for heterojunction silicon solar cells and the best efficiency yet recorded (21 %) is obtained.
        4,000원
        22.
        2019.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We investigated the characteristics of nano crystalline silicon(nc-Si) thin-film solar cells on graphite substrates. Amorphous silicon(a-Si) thin-film solar cells on graphite plates show low conversion efficiency due to high surface roughness, and many recombination by dangling bonds. In previous studies, we deposited barrier films by plasma enhanced chemical vapor deposition(PECVD) on graphite plate to reduce surface roughness and achieved ~7.8 % cell efficiency. In this study, we fabricated nc-Si thin film solar cell on graphite in order to increase the efficiency of solar cells. We achieved 8.45 % efficiency on graphite plate and applied this to nc-Si on graphite sheet for flexible solar cell applications. The characterization of the cell is performed with external quantum efficiency(EQE) and current density-voltage measurements(J-V). As a result, we obtain ~8.42 % cell efficiency in a flexible solar cell fabricated on a graphite sheet, which performance is similar to that of cells fabricated on graphite plates.
        4,000원
        23.
        2019.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Copper electroplating and electrode patterning using a screen printer are applied instead of lithography for heterostructure with intrinsic thin layer(HIT) silicon solar cells. Samples are patterned on an indium tin oxide(ITO) layer using polymer resist printing. After polymer resist patterning, a Ni seed layer is deposited by sputtering. A Cu electrode is electroplated in a Cu bath consisting of Cu2SO4 and H2SO4 at a current density of 10 mA/cm2. Copper electroplating electrodes using a screen printer are successfully implemented to a line width of about 80 μm. The contact resistance of the copper electrode is 0.89 mΩ·cm2, measured using the transmission line method(TLM), and the sheet resistance of the copper electrode and ITO are 1 Ω/□ and 40 Ω/□, respectively. In this paper, a screen printer is used to form a solar cell electrode pattern, and a copper electrode is formed by electroplating instead of using a silver electrode to fabricate an efficient solar cell electrode at low cost.
        4,000원
        24.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        염료감응형 태양전지는 지속 가능한 에너지원으로서 많은 관심을 받고 있다. 염료감응형 태양전지의 효율과 장기 안정성은 전극 물질과 전해질에 의해 크게 영향을 받는데 본 총설에서는 전해질에 초점을 두어 서술하고자 한다. 고분자 전해질막은 염료감응형 태양전지에서 기존의 액체 전해질을 대체하기 위한 대안으로 제시되어 왔다. 기존의 액체 전해질은 높 은 효율을 나타낼 수 있지만 장기적인 안정성 문제와 누액 문제로 인해 고분자 전해질막에 관한 관심은 지속적으로 증가하고 있으며 매년 이와 관련된 논문들이 활발히 보고되고 있다. 본 총설은 염료감응형 태양전지를 위한 고분자 전해질막의 개념과 개발에 대한 간단한 설명을 다루고 있으며 고분자 매트릭스의 개질, 유-무기 가소제 및 이온성 액체와 같은 첨가제의 도입에 따른 염료감응형 태양전지의 효율과 전기화학적 특성에 대해서도 최근의 연구들이 정리되어 있다.
        4,000원
        25.
        2019.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Flexible dye-sensitized solar cells using binder free TiO2 paste for low temperature sintering are developed. In this paste a small amount of titanium gel is added to a paste of TiO2 nanoparticle. Analysis of titanium gel paste prepared at 150 ℃ shows that it has a pure anatase phase in XRD and mesoporous structure in SEM. The formation of the titanium gel 1- 2 nm coated layer is confirmed by comparing the TEM image analysis of the titanium gel paste and the pristine paste. This coating layer improves the excited electron transfer and electrical contact between particles. The J-V curves of the organic binder DSSCs fabricated at 150℃ shows a current density of 0.12 mA/cm2 and an open-circuit voltage of 0.47 V, while the titanium gel DSSCs improves electrical characteristics to 5.04 mA/cm2 and 0.74 V. As a result, the photoelectric conversion efficiency of the organic binder DSSC prepared at low temperature is as low as 0.02 %, but the titanium gel paste DSSCs has a measured effciency of 2.76%.
        4,000원
        26.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Quantum dots (QDs) are an attractive material for application in solar energy conversion devices because of their unique properties including facile band-gap tuning, a high-absorption coefficient, low-cost processing, and the potential multiple exciton generation effect. Recently, highly efficient quantum dot-sensitized solar cells (QDSCs) have been developed based on CdSe, PbS, CdS, and Cu-In-Se QDs. However, for the commercialization and wide application of these QDSCs, replacing the conventional rigid glass substrates with flexible substrates is required. Here, we demonstrate flexible CISe QDSCs based on vertically aligned TiO2 nanotube (NT) electrodes. The highly uniform TiO2 NT electrodes are prepared by two-step anodic oxidation. Using these flexible photoanodes and semi-transparent Pt counter electrodes, we fabricate the QDSCs and examine their photovoltaic properties. In particular, photovoltaic performances are optimized by controlling the nanostructure of TiO2 NT electrodes
        3,000원
        27.
        2018.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Inorganic semiconductor compounds, e.g., CIGS and CZTS, are promising materials for thin film solar cells because of their high light absorption coefficient and stability. Research on thin film solar cells using this compound has made remarkable progress in the last two decades. Vacuum-based processes, e.g., co-evaporation and sputtering, are well established to obtain high-efficiency CIGS and/or CZTS thin film solar cells with over 20% of power conversion. However, because the vacuum-based processes need high cost equipment, they pose technological barriers to producing low-cost and large area photovoltaic cells. Recently, non-vacuum based processes, for example the solution/nanoparticle precursor process, the electrodeposition method, or the polymer-capped precursors process, have been intensively studied to reduce capital expenditure. Lately, over 17% of energy conversion efficiency has been reported by solution precursors methods in CIGS solar cells. This article reviews the status of non-vacuum techniques that are used to fabricate CIGS and CZTS thin films solar cells.
        4,000원
        28.
        2018.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We investigate the effect of light intensity and wavelength of a solar cell device using photoconductive atomic force microscopy(PC-AFM). A POCl3 diffusion doping process is used to produce a p-n junction solar cell device based on a poly- Si wafer, and the electrical properties of prepared solar cells are measured using a solar cell simulator system. The measured open circuit voltage(Voc) is 0.59 V and the short circuit current(Isc) is 48.5 mA. Moreover, the values of the fill factors and efficiencies of the devices are 0.7 and approximately 13.6%, respectively. In addition, PC-AFM, a recent notable method for nano-scale characterization of photovoltaic elements, is used for direct measurements of photoelectric characteristics in limited areas instead of large areas. The effects of changes in the intensity and wavelength of light shining on the element on the photoelectric characteristics are observed. Results obtained through PC-AFM are compared with the electric/optical characteristics data obtained through a solar simulator. The voltage(VPC-AFM) at which the current is 0 A in the I-V characteristic curves increases sharply up to 18 W/m2, peaking and slowly falling as light intensity increases. Here, VPC-AFM at 18 W/m2 is 0.29 V, which corresponds to 59 % of the average Voc value, as measured with the solar simulator. Furthermore, while the light wavelength increases from 300 nm to 1,100 nm, the external quantum efficiency(EQE) and results from PC-AFM show similar trends at the macro scale but reveal different results in several sections, indicating the need for detailed analysis and improvement in the future.
        4,000원
        29.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present work, we synthesize nano-sized ZnO, SnO2, and TiO2 powders by hydrothermal reaction using metal chlorides. We also examine the energy-storage characteristics of the resulting materials to evaluate the potential application of these powders to dye-sensitized solar cells. The control of processing parameters such as pressure, temperature, and the concentration of aqueous solution results in the formation of a variety of powder morphologies with different sizes. Nano-rod, nano-flower, and spherical powders are easily formed with the present method. Heat treatment after the hydrothermal reaction usually increases the size of the powder. At temperatures above 1000oC, a complete collapse of the shape occurs. With regard to the capacity of DSSC materials, the hydrothermally synthesized TiO2 results in the highest current density of 9.1 mA/cm² among the examined oxides. This is attributed to the fine particle size and morphology with large specific surface area.
        4,000원
        30.
        2018.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We investigate the effect of the modification of cellulose acetate propionate as an organic vehicle for silver paste on solar cell efficiency. For the modification of cellulose acetate propionate, poly(ethylene glycol) is introduced to the hydroxyl groups of a cellulose acetate propionate backbone via esterification reaction. The chemical structure and composition of poly(ethylene glycol) functionalized cellulose acetate propionate is characterized by Attenuated total reflectance Fourier transform infrared, 1H nuclear magnetic resonance, differential scanning calorimetry and thermogravimetric analysis. Due to the effect of structural change for poly(ethylene glycol) functionalized cellulose acetate propionate on the viscosity of silver paste, the solar cell efficiency increases from 18.524% to 18.652 %. In addition, when ethylene carbonate, which has a structure similar to poly(ethylene glycol), is introduced to cellulose acetate propionate via ring opening polymerization, we find that the efficiency of the solar cell increases from 18.524% to 18.622%.
        4,000원
        31.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Uniform TiO2 blocking layers (BLs) are fabricated using ultrasonic spray pyrolysis deposition (USPD) method. To improve the photovoltaic performance of dye-sensitized solar cells (DSSCs), the BL thickness is controlled by using USPD times of 0, 20, 60, and 100 min, creating TiO2 BLs of 0, 40, 70, and 100 nm, respectively, in average thickness on fluorine-doped tin oxide (FTO) glass. Compared to the other samples, the DSSC containing the uniform TiO2 BL of 70 nm in thickness shows a superior power conversion efficiency of 7.58±0.20% because of the suppression of electron recombination by the effect of the optimized thickness. The performance improvement is mainly attributed to the increased open-circuit voltage (0.77±0.02 V) achieved by the increased Fermi energy levels of the working electrodes and the improved short-circuit current density (15.67±0.43 mA/cm2) by efficient electron transfer pathways. Therefore, optimized TiO2 BLs fabricated by USPD may allow performance improvements in DSSCs.
        4,000원
        33.
        2017.12 구독 인증기관 무료, 개인회원 유료
        표면 플라즈마 처리된 Cu nanoparticle (NPs)로 제작된 Organic photovoltaic (OPV)소자는 일잔 OPV 소자보 다 높은 효율성을 보여준다. Nps는 다양한 합성법으로 제조되어 29 nm의 지름을 가진 입자형태를 갖추었다. 이러한 Nps는 P3HT:PCBM과 결합하여 OPV 활성층으로 사용되었는데 적층방법으로 spin과 bar 코팅 방식을 사용하였다. 제작된 소자의 효율 평가에서 스핀코팅으로 제작된 P3HT:PCBM과 Nps가 결합된 P3HT:PCBM 이 각각 1.01과 4.39%로 Np의 효과로 인한 효율 증가를 볼 수 있었다. 바코팅 프로세스를 (8, 20, 50 um 갭)를 사용하였을 경우 20 um 갭의 바코터에서 스핀코터와 같은 두께의 활성층 두께를 보였다. 제작된 활성층은 바코터 그루브 특성으로 인해 트렌치 패턴이 형성되어 빛 흡수를 약화시켜 효율성을 저하시켰다.
        4,000원
        34.
        2017.11 구독 인증기관·개인회원 무료
        The potential application of palladium-ruthenium composite membranes to the separation of hydrogen from chlorosilane gases in silicon-based industries was investigated. Ru/Pd/Al2O3/PSS membranes were prepared by electroless plating. Hydrogen permeation tests and temperature programmed desorption analysis revealed that the addition of a Ru over layer on Pd changed the hydrogen adsorption characteristics, resulting in improved stability of the membrane at low temperatures. The Ru/Pd/Al2 O3/PSS composite membrane had a stable hydrogen permeation flux of 1.8 m3m-2h-1 over a period of 1,200 h at 180°C without suffering hydrogen embrittlement. After exposure to impurities such as HCl and SiHCl3 , the hydrogen permeation flux of the Ru/Pd/Al2 O3/PSS composite membrane was stable over a period of 9h with feed pressure of 2.0 bar at 225°C.
        35.
        2017.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In commercial solar cells, the pattern of the front electrode is critical to effectively assemble the photo generated current. The power loss in solar cells caused by the front electrode was categorized as four types. First, losses due to the metallic resistance of the electrode. Second, losses due to the contact resistance of the electrode and emitter. Third, losses due to the emitter resistance when current flows through the emitter. Fourth, losses due to the shading effect of the front metal electrode, which has a high reflectance. In this paper, optimizing the number of finger on a 4 ´ 4 solar cell is demonstrated with known theory. We compared the short circuit current density and fill factor to evaluate the power loss from the front metal contact calculation result. By experiment, the short circuit current density(Jsc), taken in each pattern as 37.61, 37.53, and 37.38 mA/ cm2 decreased as the number of fingers increased. The fill factor(FF), measured in each pattern as 0.7745, 0.7782 and 0.7843 increased as number of fingers increased. The results suggested that the efficiency(Eff) was measured in each pattern as 17.51, 17.81, and 17.84 %. Throughout this study, the short-circuit current densities(Jsc) and fill factor(FF) varied according to the number of fingers in the front metal pattern. The effects on the efficiency of the two factors were also investigated.
        4,000원
        36.
        2017.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Reactive Ion Etching (RIE) and wet etching are employed in existing texturing processes to fabricate solar cells. Laser etching is used for particular purposes such as selective etching for grooves. However, such processes require a higher level of cost and longer processing time and those factors affect the unit cost of each process of fabricating solar cells. As a way to reduce the unit cost of this process of making solar cells, an atmospheric plasma source will be employed in this study for the texturing of crystalline silicon wafers. In this study, we produced the atmospheric plasma source and examined its basic properties. Then, using the prepared atmospheric plasma source, we performed the texturing process of crystalline silicon wafers. The results obtained from texturing processes employing the atmospheric plasma source and employing RIE were examined and compared with each other. The average reflectance of the specimens obtained from the atmospheric plasma texturing process was 7.88 %, while that of specimens obtained from the texturing process employing RIE was 8.04 %. Surface morphologies of textured wafers were examined and measured through Scanning Electron Microscopy (SEM) and similar shapes of reactive ion etched wafers were found. The Power Conversion Efficiencies (PCE) of the solar cells manufactured through each process were 16.97 % (atmospheric plasma texturing) and 16.29% (RIE texturing).
        4,000원
        37.
        2016.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Ni nanoparticles (NPs)-graphitic carbon nanofiber (GCNF) composites were fabricated using an electrospinning method. The amounts of Ni precursor used as catalyst for the catalytic graphitization were controlled at 0, 2, 5, and 8 wt% to improve the photovoltaic performances of the nanoparticles and make them suitable for use as counter electrodes for dyesensitized solar cells (DSSCs). As a result, Ni NPs-GCNF composites that were fabricated with 8 wt% Ni precursors showed a high circuit voltage (0.73 V), high photocurrent density (14.26 mA/cm2), and superb power-conversion efficiency (6.72 %) when compared to those characteristics of other samples. These performance improvements can be attributed to the reduced charge transport resistance that results from the synergetic effect of the superior catalytic activity of Ni NPs and the efficient charge transfer due to the formation of GCNF with high electrical conductivity. Thus, Ni NPs-GCNF composites may be used as promising counter electrodes in DSSCs.
        4,000원
        38.
        2016.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Ni nanoparticles (NPs)-graphitic carbon nanofiber (GCNF) composites were fabricated using an electrospinning method. The amounts of Ni precursor used as catalyst for the catalytic graphitization were controlled at 0, 2, 5, and 8 wt% to improve the photovoltaic performances of the nanoparticles and make them suitable for use as counter electrodes for dyesensitized solar cells (DSSCs). As a result, Ni NPs-GCNF composites that were fabricated with 8 wt% Ni precursors showed a high circuit voltage (0.73 V), high photocurrent density (14.26 mA/cm2), and superb power-conversion efficiency (6.72 %) when compared to those characteristics of other samples. These performance improvements can be attributed to the reduced charge transport resistance that results from the synergetic effect of the superior catalytic activity of Ni NPs and the efficient charge transfer due to the formation of GCNF with high electrical conductivity. Thus, Ni NPs-GCNF composites may be used as promising counter electrodes in DSSCs.
        4,000원
        39.
        2016.09 구독 인증기관 무료, 개인회원 유료
        본 연구에서는, F4-ZnPc 광활성층 기반의 저분자 유기태양전지의 성능을 최적화 하기 위해서 다 양한 조건의 홀이동층과 전자이동층을 조합하는 연구를 진행하였다. BF-DPB 호스트 유기물에 C60F36 또 는 NDP9 도펀트를 도핑한 조합을 홀이동층으로 사용하였고, 전자이동층으로는 W2(hpp)4가 도핑된 C60 또는 순수 C60/Bphen 물질을 사용하였다. 다양한 홀/전자이동층의 조합은 유기태양전지의 단락전류밀도와 fill factor, 효율에 영향을 끼치는 것을 관찰할 수 있었다.
        4,000원
        40.
        2016.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        With the increase in installed solar energy capacity, comparison and analysis of the physical property values of solar cells are becoming increasingly important for production. Therefore, research on determining the physical characteristic values of solar cells is being actively pursued. In this study, a diode equation, which is commonly used to describe the I-V behavior and determine the electrical characteristic values of solar cells, was applied. Using this method, it is possible to determine the diode ideality factor (n) and series resistance (Rs) based on light I-V measurements. Thus, using a commercial screen-printed solar cell and an interdigitated back-contact solar cell, we determined the ideality factor (n) and series resistance (Rs) with a modified diode equation method for the light I-V curves. We also used the sun-shade method to determine the ideality factor (n) and series resistance (Rs) of the samples. The values determined using the two methods were similar. However, given the error in the sun-shade method, the diode equation is considered more useful than the sun-shade method for analyzing the electrical characteristics because it determines the ideality factor (n) and series resistance (Rs) based on the light I-V curves.
        4,000원
        1 2 3 4 5