검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 63

        21.
        2010.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A highly porous Biphasic Calcium Phosphate (BCP) scaffold was fabricated by the sponge replica method with a microwave sintering technique. The BCP scaffold had interconnected pores ranging from 80 μm to 1000 μm, which were similar to natural cancellous bone. To enhance the mechanical properties of the porous scaffold, infiltration of polycaprolactone (PCL) was employed. The microstructure of the BCP scaffold was optimized using various volume percentages of polymethylmethacrylate (PMMA) for the infiltration process. PCL successfully infiltrated into the hollow space of the strut formed after the removal of the polymer sponge throughout the degassing and high pressure steps. The microstructure and material properties of the BCP scaffold (i.e., pore size, morphology of infiltrated and coated PCL, compressive strength, and porosity) were evaluated. When a 30 vol% of PMMA was used, the PCL-BCP scaffold showed the highest compressive strength. The compressive strength values of the BCP and PCL-BCP scaffolds were approximately 1.3 and 2MPa, respectively. After the PCL infiltration process, the porosity of the PCL-BCP scaffold decreased slightly to 86%, whereas that of the BCP scaffold was 86%. The number of pores in the 10 μm to 20 μm rage, which represent the pore channel inside of the strut, significantly decreased. The in-vitro study confirmed that the PCL-infiltrated BCP scaffold showed comparable cell viability without any cytotoxic behavior.
        4,000원
        23.
        2009.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        2-dimensional silica-silica Continuous Fiber-reinforced Ceramic.matrix Composites (CFCCs) were fabricated by a sol-gel infilitration method that has a changing processing condition, such as the repetitions of infilitration. In order to investigate the relationship between the processing condition and the mechanical properties of composites, the mechanical properties of specimens were measured by means of a 4-point flexural strength test while the evidence of strength degradation were microstructurally characterized. There seemed to be a minimum density value that existed at which the delamination between the fabrics would not occur. In the case that the density of silica CFCCs exceeded 1.55 g/cm3, the flexural strength also exceeded approximately 18 MPa at least. By applying the Minimum Solid Area (MSA) analysis of the porous structure, the correlation between the relative density and the mechanical properties of composites will be discussed.
        4,000원
        24.
        2007.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The carbon brake discs were manufactured by densification the carbon fiber preform using PG-CVI technology with Propene as a carbon precursor gas and Nitrogen as a carrier gas. The densities of carbon brake discs were tested at different densification time. The results indicate that the densification rate is more rapid before 100 hrs than after 200 hrs. The CTscanning image and the SEM technology were used to observe the inner subtle structure. CT-images show the density distribution in the carbon brake disc clearly. The carbon brake disk made by PG-CVI is not very uniform. There is a density gradient in the bulk. The high-density part in the carbon brake is really located in the friction surface, especially in the part of inner circle. This density distribution is most suitable for the stator disc.
        4,000원
        25.
        2006.09 구독 인증기관·개인회원 무료
        The vacuum infiltration method is one of the composite producing methods. There are several parameters in composite production by vacuum infiltration. One of them is particle size of reinforcement in particulate reinforced composites. In this study, MgO powder and Al were used as reinforcement and matrix respectively. MgO powders with different size and amount to give same height were filled in quartz tubes and liquid metal was vacuum infiltrated into the MgO powder under same vacuum condition and for same time. Infiltration height was measured and microstructure and fracture behavior of composite were investigated. It has been found that infiltration height and fracture strength were increased with particulate reinforcement sizes. It has also been determined that molten metal temperature facilitates infiltration.
        26.
        2006.09 구독 인증기관·개인회원 무료
        An infiltration technique using W-Cu composite powder has been developed to enhance microstructural uniformity of W-Cu pseudo-alloy. W-Cu composite powder, manufactured by reduction from WO3 and CuO powder mixtures, were blended with W powder and then cold iso-statically pressed into a cylindrical bar under 150 MPa. The pressed samples were pre-sintered at 1300 oC for 1 hour under hydrogen to make a skeleton structure. This skeleton structure was more homogeneous than that formed by using W and Cu powder mixtures. The skeleton structures were infiltrated with Cu under hydrogen atmosphere. The infiltrated W-Cu pseudo-alloy showed homogeneous microstructure without Cu rich region.
        27.
        2006.09 구독 인증기관·개인회원 무료
        Copper infiltration is demonstrated as a viable solution to achieve higher mechanical properties by filling the interconnected porosities of a ferrous structure with copper infiltrant. This paper will present the results of a design of experiments study based on the selected processing variables in the copper infiltration process. The variables are the following: Infiltrating temperatures, infiltrating time at pre-heat zone and hot zone, the green density of iron part, the migration of copper into the iron part at different processing conditions. The results show the flexibility of the infiltration process to attain certain mechanical properties by changing the processing conditions.
        29.
        2004.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Effect of silicon infiltration on the bend and tensile strength of 2D cross-ply carbon-carbon composites are studied. It is observed that bend strength higher than tensile strength in both types of composite is due to the different mode of fracture and loading direction. After silicon infiltrations bend and tensile strength suddenly decreases of carbon-carbon composites. This is due to the fact that, after silicon infiltration, silicon in the immediate vicinity of carbon forms the strong bond between carbon and silicon by formation silicon carbide and un-reacted silicon as free silicon. Therefore, these composites consist of three components carbon, silicon carbide and silicon. Due to mismatch between these three components secondary cracks developed and these cracks propagate from 90˚ oriented plies to 0˚ oriented plies by damaging the fibers (i.e., in-situ fiber damages). Hence, secondary cracks and in-situ fiber damages are responsible for degradation of mechanical properties of carbon-carbon composites after silicon infiltration which is revealed by microstructure investigation study by scanning electron microscope.
        4,000원
        30.
        2004.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        W-Cu composite has been used for the applications requiring both high strength, good thermal and electrical conductivity. A graded combination of W and Cu will reduce thermal stress concerned with heat conduction, maintaining good thermal conductivity and high mechanical strength. In the present work, an attempt was made to fabricate continuous W-Cu FGM by preparing the graded porous structure of W skeleton using spark plasma sintering (SPS) process followed by infiltrating Cu. The graded porous structure was prepared at 150 for 60s under pressure of 15MPa by SPS process using a graphite mold with varying crr)ss section in the longitudinal direction. Infiltration of Cu was performed at 115 for 1 hour under . W-Cu composite with graded Cu composition of 14 to 27 wt% was finally prepared. In this process the gradient of composition could be conveniently controlled by varying the gradient of cross sectional area of graphite mold, temperature and pressure.
        4,000원
        31.
        2003.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The “Film boiling” Chemical Vapor Infiltration (CVI) process is a rapid densification one developed in particular for theelaboration of carbon/carbon composite materials. In order to optimize this new thermal gradient process, we have carried outseveral studies, on one hand, about the nature of the complex chemical reactions in a confined medium, and on the other hand,relative to the role of heat and mass transfers inside the preform. We show in this study that the introduction of a permeablesheath around the preform leads to hybrid liquid/gas CVI process which presents the advantages of very high densificationrates associated with a moderate input energy.
        4,000원
        33.
        2000.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Distribution of (211) Particles within (123) grains of melt infiltration processed YBCO oxides was investigated. Processing parameters were a temperature, atmosphere (air and ) and initial 211 size. The 211 particles were distributed randomly within the 123 grains when the initial 211 size was large, while they made x-like pattern and/or butterfly-like patterns when the 211 size was small. The 211 patterns were more clearly observed in the samples prepared at higher temperatures and under atmosphere. The 211 distribution was explained in terms of the interfacial energy relationship among the solid, particle and melt.
        4,000원
        34.
        2000.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        With the emergence of the 3D CAD, it is possible to create a physical part directly from a digital model by accumulating layers of a given material. The technology is being widely used for checking designs, to create master models for rapid tooling, and for reverse engineering. However, in general, a model created by rapid prototyping technology is made of soft material that cannot be used as mass prouduction hard tool. Newly developed powder casting is suitable for rapid-manufacturing metallic tools. Powder casting can serve as a promising rapid tooling method because of high density characteristics and low dimensional shrinkage below 0.1% during sintering and infiltration. Through this process, we have realized significant time and cost savings eliminating the expense of conventional prototype tooling process.
        4,000원
        35.
        2000.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        다공성 알루미나 소결체내부로 3Y-TZP 및 12Ce-TZP 전구체를 각각 액상침투시킴으로써 2종류의 Al2O3/TZP복합체를 제조하였다. 소량의 (~11.0 wt%) TZP의 첨가는 Al2O3소결체 (1600˚C, 2시간)의 강도 (19~59%)와 파괴인성(14~157%)을 증가시켰다. 3Y-TZP의 첨가는 복합체의 강도의 향상에 12Ce-TZP의 첨가는 인성의 향상에 보다 효과적이었다. 침투도니 TZP는 복합체의 내부보다 표면에 집중되었으며, 그 결과 이곳에서의 입성장에 빨랐고 Al2O3의입성장 억제효과도 상대적으로 뛰어났다. 입계 및 입내균열전파가 일어났으나 Al2O3/12Ce-TZP의 경우가 Al2O3/3Y-TZP에 비하여 입계파괴가 우세하였다
        4,000원
        36.
        1999.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present work has attempted to investigate the dependence of Cu infiltration kinetics on in-situ structure modification of W powder skeleton in W-Cu system. In-situ structure modification of W skeleton by addition of 0.3wt%Ni-P eutectic alloy was designed to proceed during heat-up of the W compact for Cu infiltration process. It was found that the Ni-P added W skeleton underwent remarkable stucture change only during heating-up. its structure was composed of large necks of W particles above 0.5 in the ratio of neck to particle size and smooth pore channels. The infiltration experiment showed that the infiltration kinetics for the W-Ni-P followed well the linear relationship of h vs. the rate constant K of which was in good agreement with the theoretical value. On the other hand, in case of the pure W skeleton a lower K value by 20% than the theoretical one was obatined. Such discrepancy is discussed in terms of skeleton structure induced infiltration mechanics.
        4,000원
        38.
        1994.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        프로판(C3H8)을 반응가스로 사용하여 등온 저압화학기상침투법(low-pressure chemical vapor infiltration)으로 탄소/탄소 복합재료를 치밀화 할 때 반응온도, 반응가스농도, 가스유량, 반응압력 등의 제조공정변수들이 치밀화에 미치는 영향을 알아보기 위하여 실험계획법(Rdbust design method)에 의한 실험을 행하였다. 1회의 등온 저압화학기상침투 실험으로 탄소/탄소 복합재료의 부피 밀도와 표면과 내부의 부피 밀도의 차이를 특성치(characteristic value)로 한 실험계획법의 분산분석(analysis of variance)에 의하면 반응온도, 반응가스농도, 가스유량 등의 제고공정변수가 치밀화에 기여도가 높으며, 반응압력의 기여도와 제조공정변수들의 교호작용(interaction)에 의한 기여도는 낮은 것으로 나타났다. 반응온도가 1100˚C, 반응가스농도가 100% C3H8, 가스유량이 100 SCCM, 반응압력이 5torr인 조건에서 탄소/탄소 복합재료는 가장 높은 부피 밀도값을 나타내었으나 시편의 표면과 내부의 부피 밀도 차이값은 컸다.
        4,000원
        40.
        2019.03 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 주 단위 지하수자원 관리 취약시기 평가 방법을 개발하였다. 강수의 지하수위에 대한 영향을 고려하기 위하여 한계 침투량을 고려한 강우이동평균 방법을 통해 지하수위와의 상관계수를 산정하였다. 취약 시기 평가 기준을 개발하고 평가 기준에 대한 가중치를 엔트로피 방법을 이용하여 산정하였다. 강수와의 상관계수와 산정된 가중치를 이용한 주 단위 지하수자원 관리 취약시기 평가 방법을 개발하였으며, 개발한 방법을 통하여 소규모 행정구역을 대상으로 취약시기를 평가하였다. 본 연구에서 개발된 방법은 지역적일뿐만 아니라 계절적인 지하수자원의 효율적 관리 대책 수립의 근거가 될 수 있을 것이다.
        1 2 3 4