In this study, a field bridge test was conducted to find the dynamic properties of cable supported bridges with resilient-friction base isolation systems (R-FBI). Various ambient vibration tests were performed to estimate dynamic properties of a test bridge using trucks in a non-transportation state before opening of the bridge and by ordinary traffic loadings about one year later after opening of the bridge. The dynamic properties found from the results of the tests were compared with an analysis model. From the result of the ambient vibration tests of the cable supported bridge with R-FBI, it was confirmed that the dynamic properties were sensitive to the stiffness of the R-FBI in the bridge, and the seismic analysis model of the test bridge using the effective stiffness of the R-FBI was insufficient for reflecting the dynamic behavior of the bridge. In the case of cable supported bridges, the seismic design must follow the “Korean Highway Bridge Design Code (Limit State Design) for Cable supported bridges.” Therefore, in order to reflect the actual behavior characteristics of the R-FBI installed on cable-supported bridges, an improved seismic design procedure should be proposed.
In the automotive industry, the platinum titanium anodes (Pt/Ti anode) play a significant role in electroplating of chromium coating on the vehicle’s shock absorber piston rod. In this paper, the structure of Pt/Ti anode was designed to obtain high quality and save time for the electroplating process. The structure of anode was designed in 2D & 3D modeling and analyzed by CATIA and ABAQUS program, respectively. The structural modeling of the anode was analyzed and carried out using a finite element method (FEM) by applied various loads. The manufacture anodes were installed in an electroplating bath in order to test the efficiency of chromium coating on shock absorber piston rod and safety of anode structure. The results presented indicate that the structural analysis is safe after applied loads due to the allowable stress is higher than the maximum equivalent stress about 4 times, and the chromium coating test obtained high-efficiency results.
식물사회네트워크란 식물사회를 이해하기 위한 기존의 식물사회학적 방법과 사회과학에서 최근에 주목받고 있는 사회연결 망 분석 방법을 접목하여 식물사회연결망을 시각화하고 분석하는 것을 말한다. 구축 및 분석 과정은 조사구 설정 및 출현 수종 조사, 종간결합분석, 소시오그램 작성, 네트워크 구조 및 중심성 분석 순으로 진행된다. 식물사회네트워크를 구축하기 위해 본 연구는 해안식생과 내륙식생을 동시에 볼 수 있는 부산광역시를 중심으로 다양한 상관우점식생이 포함되도록 708개 조사구를 설치하여 출현 수종을 조사하였다. 조사 결과, 출현한 수종은 모두 195종이었으며, 상록수 42종, 낙엽수 151종, 반상록수 2종으로 나탔으며, 전체 출현수종을 중심으로 종간결합분석을 실시하였다. 종간결합 분석 결과, 친화종수는 사스레피 나무(47종), 마삭줄(46종), 감태나무(44종), 팥배나무(44종), 광나무(41종) 순으로 나타났으며, 이를 바탕으로 gephi 0.9.2. program을 활용하여 소시오그램을 작성하였다. 작성된 소시오그램은 해안에서 주로 출현하는 그룹과 그렇지 않은 그룹으로 나뉘어져 있어 부산광역시 산림식생의 지리적 분포특성을 반영하고 있었다. 네트워크 구조를 분석한 결과, 1,709개의 연결선 (link)이 나타났고, 한 수종과 종간결합을 갖는 종수의 평균은 약 17.5개였다. 밀도는 0.09, 지름은 5, 평균 경로거리는 2.268로 분석되었는데, 사회과학분야의 네트워크 특성과 정밀한 비교 분석을 위해 앞으로 다양한 식물사회네트워크 구축이 진행되어야 할 것으로 판단되었다. 부산광역시 식물사회네트워크에서는 사스레피나무, 감태나무, 광나무, 마삭줄 등이 중심성 이 높은 것으로 나타났다.
In this study, the design of anchorage zone for unbonded post-tensioned concrete beam with single tendons of ultimate strength 2400MPa was evaluated to verify that the KDS 14 20 60(2016) and KHBDC 2010 codes are applicable. The experimental results showed that the bursting force equation of current design codes underestimated bursting stress measured by test, because the KDS 14 20 60(2016) and KHBDC 2010 propose the location of the maximum bursting force 0.5h which is the half of the height of member regardless of stress contribution. Although the allowable bearing force calculated by current design codes was not satisfied the prestressing force, the cracks and failure in anchorage zone was not observed due to the strengthening effect of anchorage zone reinforcement.
The purpose of this study is to provide the priority of the front-loading factors in the design stage of the automotive parts development process in order to efficiently and effectively respond to the demands of the car maker (customer). Front-loading is defined as a strategy in order to improve development performance by shifting the identification and solving of design problems to earlier phases of a product development process. Two approaches of the front-loading are project-to-project knowledge transfer and rapid problem solving. For the study, a survey was conducted on the R&D department in the automobile parts company and analyzed by AHP (Analytic Hierarchy Process) method. The result of the survey shows the cost savings is the highest weight in terms of front-loading effect and in terms of front-loading factors, it gives priorities as “the problems of past project” first, “Design Review” second, “CAE (Computer Aided Engineering)” third, “FMEA (Failure Mode and Effects Analysis)” fourth, “benchmarking” and SR (Sourcing of Requirements). The results of the study will be helpful to provide practical value for improving product design of component development.
The performance of ground-based optical structures is highly sensitive to external environments, such as airflow in open space. In this paper, initial aerodynamic data due to ambient air flow were analyzed in optical models designed through knowledge-based design algorithm, and dynamic data acting on optical structures in turbulent flow with velocity of 50m/s were analyzed to present the initial shape design conditions of the structures. The simulation results showed that the maximum pressure, minimum pressure, and maximum differential pressure acting on the mirror are directly proportional to the sweep angle.
The purpose of this study is to suggest structural model and analyze design factors for the development of small greenhouse standardization model. The average dimensions of small greenhouse desired by urban farmers were 3.3m in width, 1.9m in eaves height, 2.7m in ridge height, 5.7m in length. The cladding materials for small greenhouse were preferred to glass, PC board and plastic film, framework to aluminum alloy and steel, and heating method in electrical energy. In addition, it was analyzed that small greenhouses need to develop structural model by dividing them into entry-level type and high-level type. The roof type that was used for entry-level type was arch shape, framework was steel pipe, cladding material was plastic film. On the other hand, high-level type was used in even span or dutch light type, framework with square hollow steel, cladding materials with glass or PC board. In consideration of these findings and practicality, this study developed four types of small greenhouses. The width, eaves height, ridges height, and length of the small greenhouses of even span type, which were covered with 5mm thick glass and 6mm thick PC board were 3m, 2.2m, 2.9m, and 6m, respectively. The small greenhouse of dutch light type covered with 5mm thick glass was designed with 3.8m in with, 2.2m in eaves height, 2.9m in ridges height, and 6m in length. The width, eaves height, ridges height, and length of the arch shape small greenhouse covered with a 0.15mm PO film were 3m, 1.5m, 2.8m, and 6m, respectively.
본 연구에서는 대면적을 지니는 CDI 모듈의 흐름 향상을 위하여 유체가 들어가는 유입구로부터 면적이 증가하는 직사각형 형태의 유로를 설계하였다. 이를 바탕으로 설계된 모듈 형태에 대해 공급수의 흐름성과 사영역의 유무를 파악하였고 CFD 전산 유체 역학 프로그램을 통해 유로 내의 내부 압력, 유선 그리고 속도 벡터 분포를 분석하였으며 실제 흐름 관측과 CFD 프로그램을 비교 분석하였다. 실험 결과 모든 유속 10, 20, 30 mL/min에서 유로 내 사영역이 거의 발생하지 않았으며 공급수의 흐름성도 일정하게 유지되어 추후 대면적을 가지는 CDI 공정에 적용이 가능할 것이라 판단된다.
These days, costumes of Korean creative dancing performances have been changed to be modernized and to be out of traditional regulation, as the representation of the Korean styles were replaced by other props and art devices. In this article, we have applied the emotions expressed in Jin-Yi Hwang’s sijos (Korean traditional poems), to Korean creative dancing costumes in modern style. chose three typical sijos from her six pieces, titled “Green mountain is like what I’ve meant”, “To Byeokgyesoo in Cheongsan-ri” and “Dongjibam ginaginbam”. In brief, Jin-Yi Hwang expressed her “everlasting love and emptiness”, “temptative conciliation” and “eager waiting” these three sijos, respectively. The character of Jin-Yi Hwang was shown in many TV soap operas and films, and the costumes were either much modernized, and not accurately based on the sijos she had written. Thus, we designed, made flat sketched, and fabricated three Korean creative dancing costumes from the three sijos, listed. We tried to highlight the aesthetic impression and the activeness of the dancing costumes, using both traditional and modern Korean fabrics. Since Korean dance costumes had not yet been inspired from Jin-Yi Hwang’s sijos, we discussed the importance of the fabric items, as well as the visual, auditory, and tactile characteristics of the costumes and dancers to emphasize Jin-Yi Hwang’s expressed emotions.
The purpose of this study is to provide basic data for setting environmental design standards for domestic greenhouses. We conducted experiments on thermal environment measurement at two commercial greenhouses where hot water heating system is adopted. We analyzed heat transfer characteristics of hot water heating pipes and heat emission per unit length of heating pipes was presented. The average air temperature in two greenhouses was controlled to 16.3oC and 14.6oC during the experiment, respectively. The average water temperature in heating pipes was 52.3oC and 45.0oC, respectively. Experimental results showed that natural convection heat transfer coefficient of heating pipe surface was in the range of 5.71~7.49W/m2 oC. When the flow rate in heating pipe was 0.5m/s or more, temperature difference between hot water and pipe surface was not large. Based on this, overall heat transfer coefficient of heating pipe was derived as form of laminar natural convection heat transfer coefficient in the horizontal cylinder. By modifying the equation of overall heat transfer coefficient, a formula for calculating the heat emission per unit length of hot water heating pipe was developed, which uses pipe size and temperature difference between hot water and indoor air as input variables. The results of this study were compared with domestic and foreign data, and it was found to be closest to JGHA data. The data of NAAS, BALLS and ASHRAE were judged to be too large. Therefore, in order to set up environmental design standards for domestic greenhouses, it is necessary to fully examine those data through further experiments.
Several water tanks installed in the building were damaged during the Gyeongju earthquake (2016) and the Pohang earthquake (2017). Since a water tank for fire protection is very important component, seismic safety should be ensured. In this study, an interaction between a water tank and a building was studied by the dynamic analysis of the RC building with the water tank. In case the water tank was installed on the roof of the RC building, it was confirmed that it did not significantly affect the response of the building. Based on the result, dynamic response characteristics of the water tank in the building were studied using two SDOF models represented dynamic behavior of the water tanks under earthquake. An earthquake time-history analysis was carried out with variables of aspect ratio of the tank, story of the building, and installed location in the building using three kinds of earthquakes.
In this paper, a pico hydro turbine employing low head circulation water at fish farms is designed and evaluated. Due to the advantages of simple structures, small head requirements, and low-cost investment, the constant thickness propeller turbine is considered as a feasible solution. The design process based on the free vortex method is presented in full detail, and a 4-blade runner is built using BladeGen. The turbine performance is analyzed both numerically and via experimental methods. Despite slight differences, the results show similar trends between CFD simulations and experiments carried out on factory test-rigs in a wide range of working conditions. At the design flow rate, the turbine achieves the best efficiency of 70 %, generating 3.5 kW power when rotating at 420 rpm. The internal flow field, as well as the turbine's behavior, are investigated through the distribution of blade streamlines, pressure, and velocity around the runner. Moreover, the pressure coefficient on the blade surface at 3 span positions is plotted while the head loss for each simulation domain is calculated and displayed by charts.