검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,826

        81.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to improve the mechanical properties and develop manufacturing technology through self-soluble alloy powder flame spray coating on the surface of a run-out table roller for hot rolling. The roller surface of the run-out table should maintain high hardness at high temperatures and possess high wear, corrosion, and heat resistances. In addition, sufficient bonding strength between the thermal spray coating layer and base material, which would prevent the peel-off of the coating layer, is also an important factor. In this study, the most suitable powder and process for roll manufacturing technology are determined through the initial selection of commercial alloy powder for roll manufacturing, hardness, component analysis, and bond strength analysis of the powder and thermal spray coating layer according to the powder.
        4,000원
        82.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Powder flowability is critical in additive manufacturing processes, especially for laser powder bed fusion. Many powder features, such as powder size distribution, particle shape, surface roughness, and chemical composition, simultaneously affect the flow properties of a powder; however, the individual effect of each factor on powder flowability has not been comprehensively evaluated. In this study, the impact of particle shape (sphericity) on the rheological properties of Ti-6Al-4V powder is quantified using an FT4 powder rheometer. Dynamic image analysis is conducted on plasma-atomized (PA) and gas-atomized (GA) powders to evaluate their particle sphericity. PA and GA powders exhibit negligible differences in compressibility and permeability tests, but GA powder shows more cohesive behavior, especially in a dynamic state, because lower particle sphericity facilitates interaction between particles during the powder flow. These results provide guidelines for the manufacturing of advanced metal powders with excellent powder flowability for laser powder bed fusion.
        4,200원
        88.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the powder bed fusion (PBF) process, a 3D shape is formed by the continuous stacking of very fine powder layers using computer-aided design (CAD) modeling data, following which laser irradiation can be used to fuse the layers forming the desired product. In this method, the main process parameters for manufacturing the desired 3D products are laser power, laser speed, powder form, powder size, laminated thickness, and laser diameter. Stainless steel (STS) 316L exhibits excellent strength at high temperatures, and is also corrosion resistant. Due to this, it is widely used in various additive manufacturing processes, and in the production of corrosion-resistant components with complicated shapes. In this study, rectangular specimens have been manufactured using STS 316L powder via the PBF process. Further, the effect of heat treatment at 800 °C on the microstructure and hardness has been investigated.
        4,000원
        89.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 다양한 상대습도(11~93%) 조건에서 해조류의 미생물 안정성 및 품질특성에 미치는 영향을 조사하였다. 미생물 안정성은 저장 중 대장균군, 일반세균, 효모 및 곰팡이수를 분석하였다. 일반세균은 상대습도 69~93%에서 4.40~7.00 log CFU/g, 효모 및 곰팡이는 4.20~6.40 log CFU/g로 상대습도 69%이상 조건에서 일반세균, 효모 및 곰팡이의 수가 급격하게 증가하였다. 고결현상은 상대습도 11~53% 조건에서는 일어나지 않았으나 69, 81, 93% 조건에서는 각각 86.9, 99.45, 99.98%로 높은 고결현상을 가지는 것으로 나타났다. 색도는 상대습도가 높아질수록 L값과 b값이 감소하였고, a값이 증가하여 갈변현상이 일어났다. 또한, 총 페놀함량(9.10~8.66 mg GAE/100 g dw), ABTS 소거능(24.20~24.18 mg AAE/100 g dw), FRAP(15.34~15.33 mg Fe(II)/100 g dw)활성은 저장 중 상대습도 11~33%에서 가장 높게 유지되었다. 그러나, 상대습도 43~93%에서 저장 중 총 페놀함량(8.66~4.00 mg GAE/100 g dw), ABTS(22.57~4.50 mg AAE/100 g dw), FRAP(13.06~4.00 mg AAE/100 g dw)활성이 감소하는 것으로 나타났다. 상대습도 81% 조건에서 ABTS 및 FRAP이 1/3배로 감소하였고, 93% 조건에서 총 페놀함량, ABTS 및 FRAP이 각각 1/2배, 1/5배, 1/3배로 감소하였다. 따라서, 일반세균, 효모 및 곰팡이의 성장 억제, 고결현상 방지, 갈변억제, 높은 총 페놀함량과 항산화활성 유지를 위해서는 상대습도 53% 이하의 조건에서 보관하는 것이 미생물 안정성 및 품질특성 유지에 효과적일 것으로 판단된다.
        4,000원
        90.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to evaluate cookies prepared with five different quantities (0, 5, 10, 15, and 20%) of watermelon powder (WP). This study analyzed quality characteristics, consumer liking, and CATA (check-all-that-apply) of the samples. The density and pH of the cookie dough and the L-value of the cookies tended to decrease as the amount of watermelon powder increased (p<0.05), whereas the spread factor, a-value, and hardness of the cookies tended to increase as the amount of watermelon powder increased (p<0.001). The b-value tended to increase up to WP10, but it tended to decrease from WP15 (p<0.001). The results of the evaluation of consumer liking showed that overall liking was the highest for WP5 and lowest for WP20 (p<0.05). In the analysis of the CATA survey, the main reasons for liking for all the samples were ‘Appearance’, ‘Color’, ‘Sweet taste’, ‘Nutty odor/flavor’, ‘Crispiness’, and ‘Familiarity’. WP5 showed the most diverse reasons for being liked. The common reason for disliking samples with the addition of watermelon powder was ‘Residual feel in the mouth’. In the correspondence analysis, attributes of ‘Stale taste’, ‘Clean taste’, ‘Softness’, ‘Familiarity’, ‘Moistness’, ‘Color’, ‘Blandness’ were detected in the WP0 and WP5. The results indicate that WP5 with a 5% supplementation of watermelon powder is appropriate for improving the quality and consumer acceptability of the cookies.
        4,000원
        91.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Tungsten carbide is widely used in carbide tools. However, its production process generates a significant number of end-of-life products and by-products. Therefore, it is necessary to develop efficient recycling methods and investigate the remanufacturing of tungsten carbide using recycled materials. Herein, we have recovered 99.9% of the tungsten in cemented carbide hard scrap as tungsten oxide via an alkali leaching process. Subsequently, using the recovered tungsten oxide as a starting material, tungsten carbide has been produced by employing a self-propagating high-temperature synthesis (SHS) method. SHS is advantageous as it reduces the reaction time and is energy-efficient. Tungsten carbide with a carbon content of 6.18 wt % and a particle size of 116 nm has been successfully synthesized by optimizing the SHS process parameters, pulverization, and mixing. In this study, a series of processes for the highefficiency recycling and quality improvement of tungsten-based materials have been developed.
        4,000원
        92.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we report the microstructure and characteristics of Ag-SnO2-Bi2O3 contact materials using a controlled milling process with a subsequent compaction process. Using magnetic pulsed compaction (MPC), the milled Ag-SnO2-Bi2O3 powders have been consolidated into bulk samples. The effects of the compaction conditions on the microstructure and characteristics have been investigated in detail. The nanoscale SnO2 phase and microscale Bi2O3 phase are well-distributed homogeneously in the Ag matrix after the consolidation process. The successful consolidation of Ag-SnO2-Bi2O3 contact materials was achieved by an MPC process with subsequent atmospheric sintering, after which the hardness and electrical conductivity of the Ag-SnO2-Bi2O3 contact materials were found to be 62–75 HV and 52–63% IACS, respectively, which is related to the interfacial stability between the Ag matrix, the SnO2 phase, and the Bi2O3 phase.
        4,000원
        93.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study evaluated the quality characteristics and antioxidant activities of cookies after adding black ginseng powder at ratios of 0%, 1%, 3%, 5%, and 7%, and the potential of black ginseng as a functional food. The moisture content increased with an increase in the black ginseng powder content while the pH decreased. The L value d ec reased with increase in the black ginseng powder content while the a and b values increased. The hardness decreased with increase in the black ginseng powder content. Notably, antioxidant activities, such as 2,2-diphenyl-1-picryl-hydrazyl (DPPH), 2-2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt (ABTS) radical scavenging showed the highest increases in cookies containing 7% black ginseng powder. The total phenol and flavonoid contents significantly increased according to the amount of black ginseng powder added. These results suggest that black ginseng powder can be applied to cookies to achieve high quality and antioxidant activity.
        4,000원
        94.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum-based powders have attracted attention as key materials for 3D printing owing to their low density, high specific strength, high corrosion resistance, and formability. This study describes the effects of TiC addition on the microstructure of the A6013 alloy. The alloy powder was successfully prepared by gas atomization and further densified using an extrusion process. We have carried out energy dispersive X-ray spectrometry (EDS) and electron backscatter diffraction (EBSD) using scanning electron microscopy (SEM) in order to investigate the effect of TiC addition on the microstructure and texture evolution of the A6013 alloy. The atomized A6013-xTiC alloy powder is fine and spherical, with an initial powder size distribution of approximately 73 μm which decreases to 12.5, 13.9, 10.8, and 10.0 μm with increments in the amount of TiC.
        4,000원
        95.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Conventionally, metal materials are produced by subtractive manufacturing followed by melting. However, there has been an increasing interest in additive manufacturing, especially metal 3D printing technology, which is relatively inexpensive because of the absence of complicated processing steps. In this study, we focus on the effect of varying powder size on the synthesis quality, and suggest optimum process conditions for the preparation of AlCrFeNi high-entropy alloy powder. The SEM image of the as-fabricated specimens show countless, fine, as-synthesized powders. Furthermore, we have examined the phase and microstructure before and after 3D printing, and found that there are no noticeable changes in the phase or microstructure. However, it was determined that the larger the powder size, the better the Vickers hardness of the material. This study sheds light on the optimization of process conditions in the metal 3D printing field.
        4,000원
        96.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The quality characteristics and antioxidant activity of Tteokbokkidduk alone or supplemented with 3%, 6%, 9%, and 12% wheat bran powder were assessed, to increase use of the wheat bran by-product of wheat milling. The moisture content, pH, and starch elution of Tteokbokkidduk increased with increasing wheat bran powder, while the water absorption rate did not. The L color value decreased and the a and b values increased with increasing wheat bran powder. Scanning electron microscopy of Tteokbokkidduk prepared with 0% and 3% wheat bran powder revealed uniform pore size distribution. In terms of texture profile analysis, hardness and chewiness increased, while cohesiveness decreased with increased content of wheat bran powder. Acceptance was highest for samples with 6% wheat bran powder. Quantitative description analysis (QDA) revealed increased brownness, roughness, nutty, bitterness, astringency, savory character, and hardness, and decreased adhesiveness, springiness, and chewiness with increased wheat bran powder. Principal component analysis (PCA) revealed highest overall acceptance of samples prepared with 6% wheat bran powder, reflecting the relatively low values of detrimental sensory characteristics. Antioxidant activities of Tteokbokkidduk increased as wheat bran powder content increased. The addition of 6% wheat bran powder resulted in excellent Tteokbokki in terms of acceptance, quality, and antioxidant activity.
        5,200원
        97.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The issue surrounding the problem of air pollution arising from rapid industrialization is one that is being continuously raised for discussion among the public, and concerns about indoor air quality have emerged both at home and abroad due to the longer periods of time spent indoors in modern times. Various studies are being conducted to solve this problem, and photocatalysts are also being studied as a solution. Accordingly, this research sought to verify the performance of reducing indoor pollutants by applying photocatalysts to building materials. As a result of evaluating the indoor pollutant reduction performance, it was confirmed that acetaldehyde was reduced by about 31%, toluene 29%, and total volatile compounds by 11%, and adhesion strength, an important factor regarding finishing material, was also enhanced 1.3 times or more based on Korean Industrial Standards. From these results, it is believed that indoor air pollution can be lowered to a certain extent through building materials using photocatalysts, and, therefore, research on long-term performance verification and evaluation methods should be continuously conducted and pursued in the future in relation to photocatalysts.
        4,000원
        98.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the quality characteristics and antioxidant activity of Yanggaeng prepared with various amounts of watermelon radish flesh (WRF) powder, in ratios of 0 (control), 2.5, 5, 7.5, and 10% of the cooked white bean paste. The proximate composition, pH, sugar content, Hunter’s color values, texture analysis, and antioxidative activities of Yanggaeng were examined. Increasing the amount of WRF in the Yanggaeng tended to increase the crude ash, carbohydrate, sugar, total polyphenol, total flavonoids, and anthocyanin contents, a value, DPPH and ABTS radical scavenging activities, with decreasing the moisture and crude protein contents, L and b values, and pH. Texture measurement scores in terms of springiness, chewiness for Yanggaeng showed that 2.5% or 5.0% group was higher than those of the control group. Hardness was higher in the sample groups than in the control group. In conclusion, the results show that Yanggaeng with up to 7.0% added WRF powder can be developed as products, and there is a possibility of developing health functional snack products using WRF powder.
        4,000원
        99.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, Korean Hallabong produced in Jeju Island and coffee were grafted to prepare coffee containing Hallabong extract and the nutritional components were analyzed. As the amount of Hallabong extract increased, the water content and total polyphenol content increased. However, the crude flour, crude protein, and total flavonoid content decreased significantly. The selenium content per 100 g was 91.28 mg in the 1% Hallabong group, and the iron content was 6.84 mg in the 3% Hallabong group. As the content of Hallabong extract in coffee increased, the L-value (brightness) and b-value (yellowness) increased, but the a-value (redness) showed a tendency to decrease. In the case of DPPH(2,2-Diphenyl-1-picrylhydrazyl) radical scavenging activity, the group containing 9% of Hallabong extract showed the highest value at 47.20 μmol/g of TEAC. In particular, the ABTS(2,2’-Azino-bis(3-ethylbenzothiazoline- 6-sulfonate)) and DPPH radical scavenging activity were significantly increased from coffee powder containing 6% or more of Hallabong extract(p<0.05). The caffeine content decreased as the amount of Hallabong extract added to coffee increased. Therefore, when making powder coffee with Hallabong extract added, it is recommended to set the content of Hallabong extract to 6%.
        4,200원
        100.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The process optimization of directed energy deposition (DED) has become imperative in the manufacture of reliable products. However, an energy-density-based approach without a sufficient powder feed rate hinders the attainment of an appropriate processing window for DED-processed materials. Optimizing the processing of DEDprocessed Ti-6Al- 4V alloys using energy per unit area (Eeff) and powder deposition density (PDDeff) as parameters helps overcome this problem in the present work. The experimental results show a lack of fusion, complete melting, and overmelting regions, which can be differentiated using energy per unit mass as a measure. Moreover, the optimized processing window (Eeff = 44~47 J/mm2 and PDDeff = 0.002~0.0025 g/mm2) is located within the complete melting region. This result shows that the Eeff and PDDeff-based processing optimization methodology is effective for estimating the properties of DED-processed materials.
        4,000원
        1 2 3 4 5