검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 181

        122.
        2004.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of compositions of Al2O3 in the mixed Fe/Al2O3 catalysts on the synthetic behaviors of carbon nanotubes (CNTs) by catalytic chemical vapor deposition (CCVD) process was investigated in wide range of the mixture ratios of support materials. CNTs were synthesized with Fe/Al2O3 catalysis under the condition of 40 min in synthetic time, and 923 K of synthetic temperature using C2H4 and H2 as synthetic and carrier gas, respectively. The carbon yield with the content of Al2O3 showed in a parabolic curve and the maximum carbon yield was 40 wt.% of Al2O3. As the mixture ratio of Al2O3 increased, decreasing tendency was observed in the diameter of CNTs. Specific surface areas of CNTs were increased with the increase of the mixture ratio of Al2O3.
        4,000원
        124.
        2004.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Effects of liquid phase and reinforcing particle morphology on the sintering of Al-6 wt%Cu-10 vol% or SiC particles were studied in regards to densification, structure and transverse rupture properties. The Al-Cu liquid phase penetrated the boundaries between the aluminum matrix powders and the interfaces with reinforcing particles as well, indicating a good wettability to the powders. This enhanced the densification during sintering and the resulting strength and ductility. Since most of the copper added, however, was dissolved in the liquid phase and formed a brittle phase upon cooling rather than alloyed with the aluminum matrix, the strengthening effect by the copper was not fully realized. Reinforcing particles of agglomerate type were found less suitable for the liquid phase sintering than solid type particles. and SiC particles protluced little difference on the sintering behavior but their size had a large effect. Repressing of the sintered composites increased density and bending properties but caused debonding at the matrix-particle interfaces and also fracturing of the particles.
        4,000원
        126.
        2003.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanostructured Cu-AlO composite powders were synthesized by thermochemical process. The synthesis procedures are 1) preparation of precursor powder by spray drying of solution made from water-soluble copper and aluminum nitrates, 2) air heat treatments to evaporate volatile components in the precursor powder and synthesis of nano-structured CuO + O, and 3) CuO reduction by hydrogen into pure Cu. The suggested procedures stimulated the formation of the gamma-AlO, and different alumina formation behaviors appeared with various heat treating temperatures. The mean particle size of the final Cu/AlO composite powders produced was 20 nm, and the electrical conductivity and hardness in the hot-extruded bulk were competitive with Cu/AlO composite by the conventional internal oxidation process
        4,000원
        128.
        2003.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The composites fabricated by powder in sheath rolling method were cold-rolled by 50% reduction and annealed for 1.8 ks at various temperatures ranging from 200 to 50, for improvement of the mechanical properties. The mechanical properties and texture of the composites after rolling and annealing were investigated. The tensile strength of the composites increased significantly due to work hardening after cold rolling, however it decreased due to restoration after annealing. The strength of the composites was improved by thermo mechanical treatment. On the other hand, the texture evolution with annealing temperatures wa,i different between the unreinforced material and the composites. The unreinforced material showed a deformation (rolling) texture of which main component is {112}<111> at annealing temperatures up to 30. However, the composites have already exhibited a recrystallization texture of which main component is {001}<100> after annealing at 20. This proves that the critical temperature for recrystailization is lower in the composites than in the unreinforced ones.
        4,000원
        129.
        2003.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ni coated composite was successfully Prepared by the electroless deposition Process. The average size of Ni particles coated on the matrix powder was about 20 nm. It was hard to find any reaction compound as an impurity at interface between and Ni particles after sintering. The characterization of microstructure crystal structure and fracture behavior of the sintered body were investigated using XRD, TEM and Victors hardness tester, and compared with those of the sintered monolithic body. Many dislocations were observed in the Ni phase due to the difference of thermal expansion coefficient between and Ni phase, and no observed microcracks at their and Ni interface. In the /Ni composite, the main fracture mode showed a mixed fracture with intergranular and transgranuluar type having some ,surface roughness. The fracture toughness was slightly increased due to the plastic deformation mechanism of Ni phase in the /Ni composite.
        4,000원
        132.
        2003.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum-based composites were fabricated by a powder-in sheath rolling method. A stainless steel tube with outer diameter of 12 mm and wall thickness of 1 mm was used as a sheath. A mixture of aluminum powder and particles of which volume content was varied from 5 to 20%, was filled in the tube by tap filling and then rolled by 75% reduction in thickness at ambient temperature. The rolled specimen was then sintered at 56 for 0.5 h. The mixture of Al powders and particles was successfully consolidated by the sheath rolling. The composite fabricated by the sheath rolling showed a recrystallized structure, while unreinforced Al powder compact fabricated by the same procedure showed a deformed structure. The unreinforced Al powder compact was characterized by a deformation (rolling) texture of which main component is {112}<111>, while the composite showed a mixed texture oi deformation and recrystallization. The sintering resulted in recrystallization in Al powder compact and grain growth in the composite.
        4,000원
        133.
        2003.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The powder-in sheath rolling was applied to the fabrication of composite. A stainless steel tube with outer diameter of 12 mm and wall thickness of 1 mm was used as a sheath. Mixture of aluminum powder and particles of which volume content was varied from 5 to 20 vol.% was filled in the tube by tap filling and then rolled to 75% reduction at ambient temperature. The re]]ed specimen was sintered at 56 for 0.5 hr. The composite fabricated by the sheath rolling and subsequent sintering showed the relative density higher than 0.96. The tensile strength of the composite increased with the volume content of particles, and it reached a maximum of 90 MPa which is 1.5 times higher than unreinforced material. The elongation decreased with the volume content of particles. It is concluded that the powder-in sheath rolling is an effective method for fabrication of composite.
        4,000원
        134.
        2003.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Hybrid ceramic particle reinforced 6061 and 5083 Al composite powders were prepared by the combination of twin rolling and stone mill crushing process, followed by consolidating processes of cold compaction, degassing and hot extrusion. The composite bar consists of lamellar structure of ceramic particle rich area and matrix area, in which the hybrid was decomposed into each TiC of about and particles of about in diameter. It also found that fine precipitates of about 30 nm were embedded in the matrix, which have grains of about 3 . Higher UTS was measured at the 5083 composite bar compared to the conventionally fabricated composite, due to again refinement effect by the rapid solidification. No particle was shown to form in the interface between the matrix and reinforcement, whereas carbon was diffused into the matrix.
        4,000원
        139.
        2002.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Processing and properties of composites with Ni-Fe content of 10 and 15 wt% were investigated. Homogeneous powder mixtures of /Ni-Fe alloy were prepared by the solution-chemistry route using , and powders. Microstructural observation of composite powder revealed that Ni-Fe alloy particles with a size of 20nm were homogeneously dispersed on powder surfaces. Hot-pressed composites showed enhanced fracture toughness and magnetic response. The properties are discussed based on the observed microstructural characteristics
        4,000원
        6 7 8 9 10