검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 164

        141.
        2005.06 KCI 등재 서비스 종료(열람 제한)
        In recent days, photochemical smog due to the rapid industry development and vehicle increasement has become a critical pollutant in the metropolitan area and the number of ozone alarm signal has increased every year. This research was performed to evaluate VOCs emission source characteristics and concentration of VOCs in Daegu. The site average concentration was observed in the following order : industrial area > commercial area > residential area. Most of the VOCs species except toluene showed variations with higher concentration during nighttime, and lower concentration during the daytime. The major VOCs of stationary emission source were BTEX(benzene, toluene, ethylbenzene, xylene) and methylene chloride, trichloroethene and styrene. Also, those of automobile exhaust were toluene and benzene. Also, the major VOCs concentration emited by the vehicle fuel was observed in the following order : gasoline > light oil > liquefied petroleum gas (L.P.G). Correlation coefficients values were estimated between major VOCs such as toluene, ethylbenzene, m,p-xylene, o-xylene. Results showed that correlation coefficient values were significant magnitude above 0.76. Also, there showed highly significant correlations among ethylbenzene, m,p-xylene, and o-xylene concentration(Pearson correlation coefficients, r= 0.868~0.982). Calculated correlation coefficients among commercial area, industrial area and residential area were 0.934~0.981, they showed high correlation. There showed highly correlation between stationary emission source and industrial area, compared with commercial area and residential area. Also, calculated correlation coefficients among commercial area, industrial area, residential area and automobile exhaust were 0.732, 0.725, 0.777, respectively.
        144.
        2005.03 KCI 등재 서비스 종료(열람 제한)
        The research in this paper was carried out to examine the BTEX(Benzene, Toluene, Ethylbenzene, Xylene) concentrations in Seongseo Industrial Complex. These compounds are the major constituents, more than 60% in composition of total VOCs, mainly charging in ambient air. BTEX samples were collected from the 38 sites, 10 for the source points and 18 for the boundary sites, and were analyzed by canister-GC/MS. The mean concentrations of BTEX were 33 ppbv for benzene, 214 ppbv for toluene, 89 ppbv for ethylbenzene, 77 ppbv for xylene. Among the BTEX, toluene had the highest concentration in the source points and boundary sites. In the source points, BTEX concentration of incineration facility for hazardous wastewater appeared highly in the range of 220~350 ppbv. BTEX concentrations in source boundary sites appeared in the order of toluene>ethylbenzene>xylene>benzene. As a result of the correlation analysis, the concentration of the source points was related to those of the boundary sites. Correlation of ethylbenzene and xylene was presented to 0.7991(P<0.01), 0.6329(P<0.05) as the correlation coefficient, respectively.
        146.
        2004.03 KCI 등재 서비스 종료(열람 제한)
        This study focuses on the measurement of airborne Volatile Organic Compounds (VOCs) in the Kumi electronic industrial complex during the time periods of August and September, 2002 and January and February, 2003. This study was based on the US-EPA method TO-14 while the VOCs were analyzed with GC/MSD. The toluene level revealed high concentration at all measurement sites. The areal rank of average concentrations of VOCs is as follows : industry1>industry2>urban>middle>residential. Concentrations of VOCs in Kumi electronic industrial ones were generally higher than at Yeochon and Ulsan industrial complexes. Dichloromethane and trichloroethylene, which are used as a cleaner in the process of electronic industries, were observed 4 to 8 times higher than those of other areas. Among the aromatic compounds, toluene showed the highest level, while the concentrations of dichloromethane and trichloroethylene were higher than those of other halogen compounds. In Kumi, toluene, trichloroethylene, and dichloromethane were confirmed as the major compounds of VOCs by this research.
        147.
        2004.01 KCI 등재 서비스 종료(열람 제한)
        In this study, the decomposition of gas-phase TCE, Benzene and Toluene, in air streams by direct UV Photolysis and UV/TiO2 process was studied. For direct UV Photolysis, by regressing with computer calculation to the experimental results the value of reaction rate constant k of TCE, Toluene and Benzene in this work were determined to be 0.00392s-1, 0.00230s-1 and 0.00126s-1, respectively. And the adsorption constant K of TCE, Toluene and Benzene in this work were determined to be 0.0519mol-1 ,0.0313mol-1 and 0.0084mol-1, respectively. For UV/TiO2 system by regressing with computer calculation to the experimental results the value of reaction rate constant k of TCE, Toluene, and Benzene in this work were determined to be 5.74g/ℓ․min, 3.85g/ℓ․min, and 1.18g/ℓ․min, respectively. And the catalyst adsorption constant K of TCE, Toluene, and Benzene in this work were determined to be 0.0005m3/mg, 0.0043m3/mg and 0.0048m3/mg, respectively.
        149.
        2003.07 KCI 등재 서비스 종료(열람 제한)
        The emission of volatile organic compounds (VOCs) generated from painting and coating processes is a worldwide problem as contributing factors to the development of photochemical smog and other environmental problems. Common methods of reducing VOC emissions are adsorption on activated carbon, membrane separation, absorption, incineration, or catalytic oxidation. In this article, the environmental issues caused by VOC emissions and the trend of legislation against such emissions will be surveyed first. Several conventional control technologies will then be summarized and the characteristics of each process will be introduced. Lastly, some examples will be described to show the hybrid processes which have been industrially applied for the recovery of VOC.
        151.
        2002.12 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to evaluate the pollutant removal efficiencies of the advanced drinking water treatment using ozonation process. For raw water, Nakdong River was used. By conducting batch test of ozonation, the following results were obtained. When ozone dosage of 5 mg/ℓ was used, ozone transfer and utilization efficiencies of the ozonation were 94 to 92%, respectively. Removal efficiencies of single VOC compound or mixed VOC compounds in the raw water were 80% to 90% by the ozonation with 2 mg/ℓ dosage and 10 minutes contact time. Removal efficiencies of ABS by the ozonation with 1 mg/ℓ, 3 mg/ℓ dosage and 20 minutes contact time were 83% to 96% , respectively. Almost 67% of chlorophyll-a at the concentration of 38.4㎍/ℓ was removed by ozonation at ozone dosage of 1 ㎎/ℓ for 20 min. Considering the efficiency of ozone utilization and water treatment, the most effective ozonation could be obtained with high ozone dosage and short contact time.
        154.
        2002.07 KCI 등재 서비스 종료(열람 제한)
        UV photolysis process is little known in parts of air pollution treatment, so there are not many applications in field. Therefore we have to do more experiment and study application possibility for treatment of VOCs(Volatile organic compounds). To solve these problems, we have been studying for simultaneous application of this technology. It has shown that concentration of TCE and B.T.X., diameter of reactor and wavelength of lamp have effected on decomposition efficiency. Analysis of TCE and B.T.X. concentration was carried out by GC-FID. A cylinderical reactor consisting of a quartz tube and a centrally located lamp(ψ25mm) was used. The length and diameter of reactor were 1800mm, 75mm. It has shown that the generated ozone concentration goes up 250ppm when using 64watt ozone lamp. When using Photolysis process only, the rates of fractional conversion of each material are TCE 79%, Benzene 65%, Toluene 68%, Xylene 76%. This phenomenon can be rationalized in terms of the different bond energy that indicates how easily VOCs species can be decomposed.
        6 7 8 9