검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2,258

        161.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To isolate aerobically and identify the diversity of halophilic bacteria in the soil around two ports, Daepopogu and Hwasun Port, on Jeju island, a total 46 halophilic bacteria strains were isolated and phylogenetically analysed. The isolated strains were divided into 3 phyla, 8 families, 16 genera and 23 species. The main taxa was the Bacilli class, which included 50.0% of the strains with 3 families, 10 genera and 15 species of Bacillaceae, Exiguobacterium_f and Planococcaceae. The second taxa was the Gammaproteobacteria class, which included 45.7% of the strains with 4 families, 5 genera and 7 species of Aeromonadaceae, Halomonadaceae, Marinobacteraceae and Vibrionaceae. The isolated strains were tested for hydrolytic enzymes, amylase, lipase and protease activity, and 31 strains showed activity of at least one enzyme. Furthermore, auxin activity was determined in 7 strains. This study showed that the isolated strains have possible applications in the food and agricultural industries and have importance as a genetic resource in Korea.
        4,000원
        162.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The canine parvovirus (CPV) causes clinical signs, such as severe enteritis, dehydration, diarrhea, vomiting, leukopenia, and hair loss, which may lead to death. Vaccination is still the most important approach, as no specific treatment exists to prevent CPV. Monoclonal antibodies are valuable tools to study the pathogenic mechanisms of CPV and develop effective diagnostic reagents and pharmaceuticals. In this study, two monoclonal antibodies (MAbs) against CPV-2a were obtained through hybridoma technology by fusing myeloma cells and B cells from the spleens of mice immunized with CPV type 2a (CPV-2a). Two MAbs (CPV-330 and CPV-620) were studied on the reactivity of vaccine (CPV-2a) and field strains (CPV-new 2a, -2b, and -2c) by indirect immunofluorescence (IFA), hemagglutination inhibition test (HI), virus neutralization test (VN), and inhibition of virus growth test. Two MAbs showed similar antibody titers for HI and VN. On the other hand, CPV-330 inhibited the viral replication in Crandell-Rees Feline Kidney (CRFK) cells better than CPV-620. These CPV MAbs may provide valuable biological reagents to study the CPV pathogenic mechanisms and work as therapeutic antibodies.
        4,000원
        163.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to examine the quality characteristics of cookies made with Angelica gigas Nakai fermented by Lactobacillus paracasei. As the content of Angelica gigas Nakai fermented by L. paracasei (AFL) powder increased, the pH of the cookies decreased from 6.3 to 5.2. There was no significant difference in the moisture content depending on AFL powder content. The content of reducing sugar also increased with increasing AFL powder content. Regarding the surface color of the cookies, the L- and b-values decreased with increasing AFL powder content, whereas the a-value increased. As the AFL powder content increased, the total polyphenol content and ABTS and DPPH radical scavenging activities significantly increased. Cookies with 8% AFL powder (AC8) had the highest levels of 107.16 mg%, 38.69%, and 65.56%, respectively. The texture, adhesiveness, and cohesiveness of the cookies with various AFL powder levels were not significantly different, and hardness, springiness, gumminess, and chewiness showed no tendencies toward changes. Taken together, these results showed that when AFL powder was added to cookies, bioactivities such as antioxidant activity increased, making AFL powder a good material with high potential for use in commercially baked products.
        4,000원
        164.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, 46 reservoirs in South Korea were characterized based on heavy metal concentration in sediments. We analyzed the relationship between heavy metal concentrations, physicochemical water quality and hydromorphological factors in each reservoir. Study reservoirs were classified into five groups of reservoirs, by hierarchical cluster analysis based on the similarities of heavy metal concentration. Group 1 had the most severe sediment heavy metal contamination among the groups, whereas Groups 2 and 3 showed low levels of heavy metal contamination. Group 4 displayed high value of Ni, and Group 5 showed high contamination of Pb, Cu, Cr, Ni, and Hg. Groups 1 and 5, which had high concentration of heavy metals in sediments, showed a high density of mines in the catchment of reservoirs. Heavy metal concentration was high in reservoirs with large capacity or the ones located at higher elevation, and also highly related with number of mines in the catchment of reservoir. This study can contribute to the systematic management of sediment heavy metals in reservoirs.
        4,000원
        165.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A porous-carbon material UiO-66-C was prepared from metal–organic frameworks UiO-66 by carbonization in inert gas atmosphere. Physicochemical properties of UiO-66-C materials were well characterized by Powder X-ray diffraction (PXRD), Scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FT-IR), Raman spectrometer, N2 adsorption/ desorption isotherms (BET), and the adsorption properties of the products were studied UiO-66-C has a high specific surface area up to 1974.17 m2/ g. Besides, the adsorption capacity of tetracycline could reach 678.19 mg/g, the adsorption processes agreed well with the pseudo-second-order kinetic model and Langmuir isotherm model.
        4,000원
        166.
        2022.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, N/S co-doped carbon felt (N/S-CF) was prepared and characterized as an electrode material for electric double-layer capacitors (EDLCs). A commercial carbon felt (CF) was immersed in an aqueous solution of thiourea and then thermally treated at 800 oC under an inert atmosphere. The prepared N/S-CF showed a large specific surface area with hierarchical pore structures. The electrochemical performance of the N/S-CF-based electrode was evaluated using both 3- electrode and 2-electrode systems. In the 3-electrode system, the N/S-CF-based electrode showed a good specific capacitance of 177 F/g at 1 A/g and a good rate capability of 41% at 20 A/g. In the 2-electrode system (symmetric capacitor), the freestanding N/S-CF-based electrode showed a specific capacitance of 275 mF/cm2 at 2 mA/cm2, a rate capability of 62.5 % at 100 mA/cm2, a specific power density of ~ 25,000 mW/cm2 at an energy density of 23.9 mWh/cm2, and a cycling stability of ~ 100 % at 100 mA/cm2 after 20,000 cycles. These results indicate the N/S co-doped carbon felts can be a promising candidate as a new electrode material in a symmetric capacitor.
        4,000원
        167.
        2022.05 구독 인증기관·개인회원 무료
        Polyoxometalates (POMs) are nanoclusters composed of transition metals with high oxidation states. Owing to their redox properties and structural diversity, POMs have been applied to broad fields, such as catalysis, materials, and medicine. Among various fields of application, POMs play an important role in radiochemistry. POMs can form complexes with tri- and tetravalent lanthanides and actinides (radioactive elements), which may be good sequestrators or agents for separating nuclear wastes. Among the most prominent POM structures, Anderson-type POMs with a general formula of [Hy(XO6)M6O18]n− (y=0–6, n=2–8, M=addenda atom, X=heteroatom) represent one of the basic topological structures of the POM family. An important feature of Anderson type POMs is incorporating a large number of various heteroatoms with different size and oxidation states, which can lead to tune chemical properties. Interestingly, no example of Anderson type POMs with early transition metal ions in the heteroatom site has been reported to date. Herein, we discovered that the Anderson POM Na2K6Ti0.92W6.08O24·12H2O, which consists of pure inorganic framework built from a central Ti core supported by six WO6 inorganic scaffold, and the crystal structure was confirmed and refined using single-crystal X-ray diffraction (SC-XRD). In addition, structural characterizations, including, Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and Inductively coupled plasma-optical emission spectroscopy (ICP-OES) were performed.
        168.
        2022.05 구독 인증기관·개인회원 무료
        Efficient capture and storage of radioactive iodine (consisting of two isotopes: 129I and 131I), produced or released from nuclear activities, are of paramount importance for sustainable development of nuclear energy due to their volatility and long half-life. Therefore, it is very important to develop new adsorbents for efficient utilization of radioactive iodine from nuclear waste. Various methods and materials are used for I2 capturing and removing, including MOFs due to their high porosity and fast adsorption kinetics, which are rightfully considered effective sorbents for removing I2. Metal–organic frameworks (MOFs) are porous crystalline materials which have diverse pore geometry and unique physicochemical properties, have attracted enormous attention for use in gas storage, separation and catalysis. The ability of MOFs to adsorb volatile products at room temperature can significantly improve the cost-effectiveness of the utilization process. This work describes the synthesis and characterization of three new metal-organic frameworks based on pyrazine (pyz), 44’bipyridine (bpy), 1,2 -bis(4 - pyridyl) – ethane (bpe) and copper (II) hexafluorozironate, as potential adsorbents for I2 capture. All of these three MOFs exhibit a two - dimensional (2D) crystal structure consisting from infinity non-crossing linear chains. The crystal structure of [Cu(pyz)2(ZrF6)2(H2O)2], [Cu(bpy)4(H2O)2ZrF6] and [Cu(bpe)4(H2O)2ZrF6] were characterized using powder X-ray diffraction (PXRD), single crystal X-ray diffraction (SC-XRD). Comparative characteristics of synthesized MOFs, including Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) were also performed. The I2 sorption experiments were examined by UV-vis spectroscopy.
        169.
        2022.05 구독 인증기관·개인회원 무료
        Radiological characterization, one of the key factors for any successful decommissioning project for a nuclear facility, is defined as a systematic identification of the types, quantities, forms, and locations of radioactive contamination within a facility. This characterization is an essential early step in the development of a decommissioning plan, in particular during transition period after permanent shutdown of the facility, and also to be used for classification of decommissioned radioactive wastes so that their disposal criteria can be met. Therefore, the characterization should be well planned and performed. In the transition period, the characterization information developed during the operational phase is usually reexamined with respect to the applied assumptions, the actual status of the facility after shutdown, the accuracy of the required measurements and changes in its radiological properties to support the development of the final decommissioning plan. Based on some national (Korean, USA’s and Japanese) laws including the related regulations, and some related documents published by OECD/NEA, IAEA, and ASTM, key elements of radiological characterization, which should be developed in the transition period, could be proposed as the followings. The key elements might be an operational history including facility operation history and contamination by events and/or accidents, radiological inventory of the facility and site area, characterization survey including in-situ survey and/or sampling and analyses, radiological mapping (which is able to identify radiological contamination levels of SSCs, and the facility area and, if contamination may be suspected, the surroundings) with tabulating, residual radioactivity (or derived concentration guideline levels) of selected major radionuclides for remediation of the site, (retainable and retrievable) recording, and quality control and quality assurance. In review process of the operational history, interviews of current or former long-tenured knowledgeable employees of the facility should be conducted to identify conditions that may have been missing from the records.
        170.
        2022.05 구독 인증기관·개인회원 무료
        During the decommissioning of nuclear power plant (NPP), massive amount of concrete wastes is generated, which are non-radioactive and radioactive. The concrete is a representative construction material which affords reliable structural stability, good formability, and trustful integrity. Also, its reasonable neutron absorbing property allows the various application for many components, including building construction material, bio-shield concrete, etc. Due to the noted aspects of concrete, the radiological concrete characterization is classified as an important process for development of effective strategy for concrete management, in terms of process management and financial control during the decommissioning. The characterization of bio-shield concrete is important in waste management. The understanding and characterization of activation depth is essential for the determination of waste management strategy, classification of bio-shield concrete, and process development of decommissioning. On the other hand, concrete for construction application requires the evaluation of surface contamination of them. The concrete for containment building and its structure is rarely activated, but surface contaminated. In this paper, the reactor data from representative PWR reactors in the US is studied. The experience on Yankee Rowe, Maine Yankee, and Connecticut Yankee NPPs are systematically studied. The Yankee Rowe was a 4-loop PWR of Westinghouse design with 185 MWe. The Main Yankee was a 3- loop PWR of Combustion Engineering design with 864 MWe. The Connecticut Yankee was a 4-loop Westinghouse type with 560 MWe. The characterization studies on bio-shield concrete will be discussed in this paper, including activation depth, primary nuclides, etc.
        171.
        2022.05 구독 인증기관·개인회원 무료
        Prior to dismantling a nuclear facility, full site characterization should be carried out to identify basic data for various stages of decommissioning, such as deregulation of sites and structures, selection of decontamination technology, decommissioning methods, and waste management and disposal. Radiological characterization is implemented through information collection, on-site measurement, sampling and analysis, and theoretical calculations and proven codes for radioactive material at the time of decommissioning of the nuclear facility. There are issues in that it takes a lot of time and money to collect and analyze samples for characterization of contaminated sites and radioactive structures. Therefore, in the entire process of decommissioning a nuclear facility, a technology that can quickly measure the radiological characteristics of various decommissioning objects and wastes on site is required. In this project, the utilization of gamma cameras that can be analyzed in the field for quick and accurate characteristic evaluation at the dismantling site was studied. A gamma camera, iPIX from Canberra (Now it became Mirion Technology), was tested in this study. It is a unique gamma imager, which have a CdTe sensor with TIMEPIX chip and a coded aperture collimator, quickly locates and identifies low to high level radioactive sources from a distance while estimating the dose rate at the measurement point in real time. It also can be combined with CZT sensor which called iPIX-NID (nuclide Identification) provides users with clear understanding of radionuclides presence with no need of any spectroscopic knowledge. iPIX with iPIX-NID convert the gamma camera into a hot-spot detector with radionuclide information. To verify the applicability of a gamma camera in Nuclear power plant, it was implemented to Kori unit-1 which was permanently shut down from 2017. Various Systems were observed at restricted area including reactor cooling system, boron recovery system, residual heat removal system, containment spray system, and etc. The locations of hot spots were clearly revealed by iPIX and these results can be used for selecting the locations of destructive samples and help to decide the conservative decision making. Condensate water systems in turbine building were also observed by a gamma camera and showed no nuclide. Based on this preliminary gamma camera applications, further investigation and tests will be carried out to Kori Unit-1.
        172.
        2022.05 구독 인증기관·개인회원 무료
        Cutting reactor pressure vessels (RPV) into acceptable sizes for waste disposal is a key process in dismantling nuclear power plants. In the case of Kori-1, a remote oxyfuel cutting method has been developed by Doosan Heavy Industry & Construction to dismantle RPVs. Cutting radioactive material, such as RPV, generates a large number of fine and ultrafine particles incorporating radioactive isotopes. To minimize radiological exposure of dismantling workers and workplace surface contamination, understanding the characteristics of radioactive aerosols from the cutting process is crucial. However, there is a paucity of knowledge of the by-products of the cutting process. To overcome the limitations, a mock-up RPV cutting experiment was designed and established to investigate the characteristics of fine and ultrafine particles from the remote cutting process of the RPV at the Nuclear Decommissioning Center of Doosan Heavy Industry & Construction. The aerosol measurement system was composed of a cutting system, purification system, sampling system, and measurement device. The cutting system has a shielding tent and oxyfuel cutting torch and remote cutting robot arm. It was designed to prevent fine particle leakage. The shielding tent acts as a cutting chamber and is connected to the purification system. The purification system operates a pressure difference by generating an airflow which delivers aerosols from the cutting system to the purification system. The sampling system was installed at the center of the pipe which connects the shielding tent and purification system and was carefully designed to achieve isokinetic sampling for unbiased sampling. Sampled aerosols were delivered to the measurement device. A high-resolution electrical low-pressure impactor (HR-ELPI+, Dekati) is used to measure the size distribution of inhalable aerosols (Aerodynamic diameter: 6 nm to 10 μm) and to collect size classified aerosols. In this work, the mock-up reactor vessel was cut 3 times to measure the number distribution of fine and ultrafine particles and mass distribution of iron, chromium, nickel, and manganese. The number distribution of aerosols showed the bi-modal distribution; two peaks were positioned at 0.01−0.02 μm and 0.04–0.07 μm respectively. The mass distribution of metal elements showed bi-modal and trimodal distribution. Such results could be criteria for filter selection to be used in the filtration system for the cutting process and fundamental data for internal dose assessment for accidents. Future work includes the investigations relationships between the characteristics of the generated aerosols and physicochemical properties of metal elements.
        173.
        2022.05 구독 인증기관·개인회원 무료
        An application of the final decommissioning plan for unit 1 of Kori NPP was submitted to NSSC on 14 May 2021. We have been implementing the project related to the radiological characterization for the plan since 2019. However, the project was not running smoothly due to the regulatory environment. The destructive sampling from the objects was not allowed, so only smear (swipe) samples are available. In this study, the sampling way and the analytical results of radionuclides are presented. In addition, we propose in-situ measurement using gamma camera and in-situ gamma spectroscopy to obtain more comprehensive radiological information on the object.
        174.
        2022.05 구독 인증기관·개인회원 무료
        Radioactive materials emitted from nuclear accident or decommissioning cause soil contamination over wide areas. In the event of such a wide area of contaminated soil, decontamination is inevitable for residents to reside and reuse as industrial land. There are many ways to decontaminate these contaminated soils, but in urgent situations, the soil washing, which has a short process period and relatively high decontamination efficiency, is considered the most suitable. However, the soil washing process of removing fine soil and cesium by using washing liquid as water and adding a flocculating agent (J-AF) generates slurry/sludge-type secondary waste (Cs-contaminated soil + flocculating agent). Since this form of sludge contaminants cannot be disposed, solidification is needed using an appropriate solidification agent to treat wastes for disposal. Therefore, this study devised a treatment method of contaminated fine soils occurring after the soil washing process. This investigation prepared the simulated wastes of contaminated fine soils generated after the soil washing, and pelletized the samples using a roll compactor under the optimum operating conditions. The optimum conditions of the device were determined in the pre-test. Roll speed, feeding rate, and hydraulic pressure were 1.5 rpm, 25 rpm, and 28.44 MPa, respectively. The waste forms were manufactured by incorporating created pellets (H 6.5 × W 9.4 mm) using polymers as solidification agents. Used polymers were main ingredient (YD-128), hardener (G-1034), and diluent (LGE). The optimum mixing ratio was YD-128 : G-1034 = 65 : 35 phr, and LGE was added in an amount of 10wt% of the total mixture. To confirm the disposal suitability of the manufactured waste forms, characterization evaluation was carried out (compressive strength, thermal cycling, immersion, and leaching test). Characterization evaluation revealed a minimum compressive strength of 23.1 MPa, far exceeding 3.44 MPa of the disposal facility waste acceptance criteria. Compressive strength increased to the highest value of 31.90 MPa after immersion test. To examine leaching characteristics, the pH, Electrical Conductivity (EC) and leachability index (􀜮􀯜) of leachates were identified. As results, pH and EC consistently increased or remained constant with leaching time. The average of Co, Cs and Sr nuclides was 17.76, 17.38 and 14.04, respectively, exceeding the value of 6 in the waste acceptance criteria. Effective waste treatment/ disposal can be achieved without increasing volumes of sludge/slurry by enhancing the technique of this research by performing additional studies in the future.
        175.
        2022.05 구독 인증기관·개인회원 무료
        In this introduction, test devices for radwaste characterization specimen was developed and utilized. In order to permanently dispose of solidified radwastes, not only radioactive characterization but also physical & chemical characterization shall be performed to assess compliance with the waste acceptance criteria. Waste acceptance criteria can be made up measurement of free standing water, compressive strength test, thermal cycling test, radiation resistance test, leaching test, immersion test. Approximately, the equipment for each test is sorted out five types. equipment for making characterization specimen, equipment for compressive strength test, equipment for thermal cycling test, equipment for radiation resistance test, equipment for Immersion test and leaching test. Equipment for making characterization specimen is operated the dry process. The equipment of two types: one (sampling device) that cores solidified radioactive waste in a drum, and the other (cutting machine) that properly cuts the coring samples. Sampling device is not used in industry, so it is specially manufactured, cutting machine is using ready-made products. In addition, devices for compressive strength test and thermal cycling test are using ready- made products. Facility for Radiation resistance test is located in Jeong-eup. For the efficient test, a table was manufactured in the columnar form like the specimen. Finally, devices for immersion test and leaching test are so transformed that contact all surfaces of the specimen with the liquid.
        176.
        2022.05 구독 인증기관·개인회원 무료
        A deep geological disposal system, which consists of the engineered and natural barrier components, is the most proven and widely adopted concept for a permanent disposal of the high level radioactive waste (HLW) thus far. The clay-based engineered barrier is designed to not only absorb mechanical stress caused by the geological activities, but also prevent inflow of groundwater to canister and outflow of radionuclides by providing abundant sorption sites. The principal mineralogical constituent of the clay material is montmorillonite, which is a 2:1 phyllosilicate having two tetrahedral sheets of SiO2 sandwiching an octahedral sheet of Al2O3. The stacking of SiO2 and Al2O3 sheets form the layered structures, and ion-exchange and water uptake reactions occur in the interlayer space. In order to reliably assess the radionuclide retention capacity of engineered barrier under wide geochemical conditions relevant to the geological disposal environments, sorption mechanisms between montmorillonite and radionuclides should be explicitly investigated in advance. Thus far, sorption behavior of mineral adsorbents with radionuclides has been quantified by the sorption-desorption distribution coefficient (Kd), which is simply defined as the ratio of radionuclide concentration in the solid phase to that in the equilibrium solution; the Kd value is conditional, and there have been scientific efforts to develop geochemically robust bases for parameterizing the sorption phenomena more reliably. In this framework, application of thermodynamic sorption model (TSM), which is theoretically based on the concept of widely accepted equilibrium models for aquatic chemistry, offers the potential to improve confidence in demonstration of radionuclide sorption reactions on the mineral adsorbents. Specifically, it is generally regarded in the TSM that coordination of radionuclides on montmorillonite takes place at the surficial aluminol and silanol groups while their ion-exchange reactions occur in the interlayer space also. The effects of electrical charge on the surface reactions are additionally corrected in accordance with the numerous theories of electrochemical interface. The present work provides an overview of the current status of application of TSM for quantifying sorption behaviors of radionuclides on montmorillonite and experimental results for physical separation and characterization of Ca-montmorillonite from the newly adopted reference bentonite (Bentonil- WRK) by means of XRD, BET, FTIR, CEC measurement, and acid-base titration. The determined mineralogical and chemical properties of the montmorillonite obtained will be used as input parameters for further sorption studies of radionuclides with the Bentonil-WRK montmorillonite.
        177.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The bacterial soft-rot disease is one of the most critical diseases in vegetables such as Chinese cabbage. The researchers isolated two bacteria (Pseudomonas kribbensis and Pantoea vagans) from diseased tissue samples of Chinese cabbages and confirmed them as being the strains that cause soft-rot disease. Lactic-acid bacteria (LAB), were screened and used to control soft-rot disease bacteria. The researchers tested the treatments with hypochlorous acid water (HAW) and LAB supernatant to control soft-rot disease bacteria. The tests confirmed that treatments with the HAW (over 120 ppm) or LAB (Lactobacillus plantarum PL203) culture supernatants (0.5 mL) completely controlled both P. kribbensis and P. vagans.
        4,000원