검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 22

        2.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Novel Ni- and Fe-based alloys are developed to impart improved mechanical properties and corrosion resistance. The designed alloys are manufactured as a powder and deposited on a steel substrate using a high-velocity oxygen-fuel process. The coating layer demonstrates good corrosion resistance, and the thus-formed passive film is beneficial because of the Cr contained in the alloy system. Furthermore, during low-temperature heat treatment, factors that deteriorate the properties and which may arise during high-temperature heat treatment, are avoided. For the heattreated coating layers, the hardness increases by up to 32% and the corrosion resistance improves. The influence of the heat treatment is investigated through various methods and is considered to enhance the mechanical properties and corrosion resistance of the coating layer.
        4,000원
        3.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 절탄기 튜브의 저온부식 손상을 방지하기 위해 Inconel 625 용사재료를 활용하여 아크 열용사 코팅기술 적용 후 실링 처리를 실시하였다. 용사코팅(TSC) 층의 내식성 분석을 위해 0.5 wt% 황산 수용액에서 다양한 전기화학적 실험을 진행하였다. 양극분극 실험 후에는 주사전자현미경과 EDS 성분분석을 통해 부식 손상 정도를 파악하였다. 자연전위 계측 시 TSC+실링처리(TSC+Sealing)의 안정적인 전위 형성을 통해 실링처리 효과를 확인하였다. 양극분극 실험 결과 TSC와 TSC+Sealing에서 부동태 영역이 확인되었으며, 부식 손상 역시 관찰되지 않아 내식성이 개선되었다. 더불어 타펠분석에 의해 산출된 부식전위와 부식전류밀도 분석 결과 TSC+Sealing의 내식성이 가장 우수하게 나타났다.
        4,000원
        5.
        2015.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, nitrogen ions were implanted into STS 316L austenitic stainless steel by plasma immersion ion implantation (PIII) to improve the corrosion resistance. The implantation of nitrogen ions was performed with bias voltages of −5, −10, −15, and −20 kV. The implantation time was 240 min and the implantation temperature was kept at room temperature. With nitrogen implantation, the corrosion resistance of 316 L improved in comparison with that of the bare steel. The effects of nitrogen ion implantation on the electrochemical corrosion behavior of the specimen were investigated by the potentiodynamic polarization test, which was conducted in a 0.5 M H2SO4 solution at 70 oC. The phase evolution and texture caused by the nitrogen ion implantation were analyzed by an X-ray diffractometer. It was demonstrated that the samples implanted at lower bias voltages, i.e., 5 kV and 10 kV, showed an expanded austenite phase, γN, and strong (111) texture morphology. Those samples exhibited a better corrosion resistance.
        4,000원
        7.
        2012.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Coatings composited with alumina and Perfluoro alkoxyalkane (PFA) resin were deposited on stainless steel plate (SUS304) to further improve corrosion resistance. Plate (ca. 10μm) and/or nanosize (27~43 nm) alumina used as inorganic additives were mixed in PFA resin to make alumina-fluoro composite coatings. These coatings were deposited on SUS304 plate with wet spray coating and then the film was cured thermally. According to the amount and ratio of the two kinds of alumina having plate morphology and nano size, corrosion resistance of the film was evaluated under strong acids (HF, HCl) and a strong base (NaOH). The film prepared with the addition of 5~10 wt% alumina powders in PFA resin showed corrosion resistance superior to that of pure PFA resin film. However, for the film prepared with alumina content above 10 wt%, the corrosion resistance did not improve with the physical properties, such as surface hardness and adhesion. The film prepared with plate/nanosize (weight ratio = 1/2) alumina especially enhanced the surface hardness and corrosion resistance. This can be explained as showing that the plate and the nanosize alumina dispersed in PFA resin effectively suppressed the penetration of cations and anions due to the long penetration length and fewer defects that accompany the improved surface hardness under a serious environment of 10% HF solution for over 120 hrs.
        4,000원
        8.
        2011.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Simultaneous Ni and C codeposition by electrolysis was investigated with the aim of obtaining better corrosionresistivity and surface conductivity of a metallic bipolar plate for application in fuel cells and redox flow batteries. The carboncontent in the Ni-C composite plate fell in a range of 9.2~26.2at.% as the amount of carbon in the Ni Watt bath and theroughness of the composite were increased. The Ni-C composite with more than 21.6at.% C content did not show uniformlydispersed carbon. It also displayed micro-sized defects such as cracks and crevices, which result in pitting or crevice corrosion.The corrosion resistance of the Ni-C composite in sulfuric acid is similar with that of pure Ni. Electrochemical test results suchas passivation were not satisfactory; however, the Ni-C composite still displayed less than 10−4A/cm2 passivation currentdensity. Passivation by an anodizing technique could yield better corrosion resistance in the Ni-C composite, approaching thatof pure Ni plating. Surface resistivity of pure Ni after passivation was increased by about 8% compared to pure Ni. On theother hand, the surface resistivity of the Ni-C composite with 13at.% C content was increased by only 1%. It can be confirmedthat the metal plate electrodeposited Ni-C composite can be applied as a bipolar plate for fuel cells and redox flow batteries.
        4,000원
        12.
        2003.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this thesis, using the 400 series ferrite stainless steel such as 434LD2 which are furter excellent then the existing ferric products in mechanical characteristics, and experiment has been conducted on corrosion resistance of sensor ring. The results are following. 1. The products before sintering are much more corrodible in the condition of spray test of salt water and ammonia than humidity and nitrogen condition. 2. 434LD2 ferrite stainless steel has shown a good corrosion resistance without an addition surface treatment. thus the decreasing production process has been obtained. 3. As hardness value of HRB 80 and tensile test, 434LD2 ferrite stainless steel with show a good endurance when it is combined to constant velocity joint (c/v joint), and has a good hardness properties endurable to sand and pebble impact.
        4,500원
        14.
        2001.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        용융탄산염 연료전지(MCFC)의 상용화에 있어서 가장 큰 문제점으로 지적되고 있는 분리판 wet-seal부의 내식성 향상을 위해 AISI 316L 스테인레스강에 Ni은 전기도금법으로, Y과 Al은 e-beam PVD법으로 피복하여 Ni/Y/Al충을 형성시켰다. 800˚C 환원분위기에서 5시간의 열처리를 통해 NiAlY 합금층을 얻을 수 있었으며, 그 후 650˚C 용융탄산염내에서 as-received AISI 316L 스테인레스강과 200시간의 침지실험을 퉁해 내식성이 비교.평가되었다. SEM/EDS를 통한 단면 관찰 결과, Y의 첨가에 의해 치밀한 산화막을 형성하여 분리판 wet-seal부의 내식성을 향상시킬 수 있었다.
        4,000원
        15.
        2000.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, sensor ring for antilock brake system was studied using the 400 series ferrite stainless steel powder. Because of more excellent corrosion resistance and mechanical characteristics than iron, sensor ring has been manufactured by P/M(Powder Metallurgy) method 400 series ferrite stainless steel. the results are following. 1, Compared with sensor ring made by iron, 400 series ferrite stainless steel has shown a good corrosion resistance without an addition surface treatment. thus the decreasing production process has been obtained. 2. The products before sintering are much more corrodible in the condition of spray test of salt water and ammonia than humidity and nitrogen condition.
        4,600원
        16.
        1998.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        용융탄산염 연료전지는 650˚C의 부식성이 강한 용융탄산염내에서 작동되므로, 분리판 재료로 사용되고 있는 316L 스테인레스강의 부식은 용융탄산염 연료전지의 수명을 단축시키는 주요한 원인이다. 특히 분리판 wet-seal부의 부식은 보다 심각한 것으로 알려져 있다. 이를 해결하기 위하여 AI계 합금이 피복재료로 사용되어 왔지만, 본 연구에서는 보다 우수한 분리판 wet-seal부의 내식 피복재료 개발을 위하여 피복재료인 NiAI 합금에 산화 활성화 원소인 yttrium을 최고 1.5 at%까지 첨가하였다. 650˚C의 용융탄산염내에서 yttium 함량에 따른 NiAI/Y 합금의 침지부식실험 및 분극실험을 통하여 내식성을 평가하고 부식 억제를 위해 가장 적절한 NiAI/Y 피복 재료의조성을 결정한 결과 최소의 yttrium 조성은 0.7 at% 임을 알 수 있었다.
        4,000원
        18.
        1996.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To improve the corrosion resistance of stainless steel and Fe, the adherence between fIlm and substarte and the corrosion resistance to ceramic fIlm (TiO2 and ZrO2), coated by RF magnetron sputtering, were studied. The adherence index (X) was determined by the measure of micro - hardness test. Also, the corrosion resistance on oxide coatings was studied using electrochemical measurement. The main results obtained are as the following: 1) In the micro - hardness test, with 1J.UI1 thickness fIlm, it has only one the value of X. Above 2J.UI1 thickness fIlm, however, get another value ofX as the cracks in fIlm. 2) The adhensivity of titania (TiO2) coated fIlm is superior to that of zirconia (ZrO2) coated fIlm. 3) All oxide fIlm used adhere well on the mild materials such as pure steel than high intensity materials like stainless steel. 4) The corrosion resistance of zirconia coated materials was improved compared to titania coated materials.
        4,000원
        19.
        1996.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To ceramic mm, SiO2 and Al2O3, coated on pure Fe and stainless steel(SUS41O) by RF magnetron sputtering, the adherence between mm and substarte was studied. The adherence index (χ) was determined by the measure of micro hardness test. Also, the corrosion resistance on oxide coatings was studied using electrochemical measurement. The main results obtained are as the following: 1) In the micro-hardness test, with 1μm thickness mm, it has only one the value of χ. Above 2μthickness fIlm, however, get another value of χas the cracks in fIlm. 2) The oxide fIlm adhere well on the mild materials such as pure steel than high intensity materials like stainless. 3) Alumina(Al2O3) coated materials have better corrosion resistance than silica(SiO2)coated materialsterials
        4,000원
        20.
        1992.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Concept of primary solidification mode control was adopted to obtain optimal solidification crack resistance, hot ductility, corrosion resistance and toughness for austenitic stainless steel. By controlling primary solidification phase as primary δ and containing no ferrite at room temperature, optimal solidification crack resistance, hot ductility, corrosion resistance and cryogenic toughness could be obtained. The optimum chemical composition of austenitic stainless steel ranges 1.46~1.55(Creq/Nieq ratio) calculated by Schaeffler's equation.
        4,000원
        1 2