검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 316

        2.
        2025.03 구독 인증기관·개인회원 무료
        인공지능의 발전은 검색엔진, SNS, ChatGPT 등 다양한 분야에서 혁신을 이끌며 사회와 산업 전반에 변화를 가져오고 있다. 특히, 교 통 분야에서는 AI 기반 기술이 교통정보 수집 및 분석 방식에 변화를 주며, 새로운 활용 가능성을 제시하고 있다. 과거 육안 계수 방 식에 의존했던 교통량 조사는 현재 CCTV 영상과 딥러닝 객체 인식 기술을 활용해 신뢰성과 정확성이 크게 향상되었다. AI 기반 교통 솔루션의 도입으로 교통량 조사 데이터는 정책 수립, 운영 개선, 사회간접자본 건설 등 다양한 분야에서 중요한 기초 자료로 활용되고 있다. 이에 본 연구에서는 YOLO v8을 활용하여 차량 축 인식 기반 차종 분류의 정확성을 향상시키고, 기존 촬영 기법과 비교·분석을 통해 최적의 인식기법을 제시하고자 한다.
        3.
        2025.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        선박에는 단열을 위한 발포제가 적용된다. 기존의 발포제에는 지구온난화물질인 수소불화탄소(HFC)를 다량 포함하고 있는 문제점이 있으며, 우리나라는 몬트리올 의정서의 ‘키칼리 개정서’를 채택함에 따라 HFC를 ‘24년부터 ’45년까지 기준 수량의 80% 감 축하기로 결정되었다. 이에, 메틸포메이트 원료는 지구온난화지수가 0(HFC는 960~1,430)으로 향후 친환경발포제로 높은 기대를 갖고 있다. 하지만, 메틸포메이트 발포제의 성능은 원료의 순도 및 주변환경에 높은 영향을 받음으로 각 공정환경에 대한 정확한 분류가 필요하다. 이에, 본 논문에서는 주변환경(온도)과 메틸포메이트 순도에 따라, 총 4개의 케이스를 만들었다. 각 케이스에 대해서 10,010 장의 이미지를 학습하고, 이를 구글넷(GoogLeNet)알고리즘을 이용하여 분류하였다. 분류결과 정확도는 96.8%를 갖고, F1-Score는 0.969 를 갖는 것으로 계산하였다.
        4,000원
        4.
        2025.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study addresses the critical challenge of enhancing vehicle classification accuracy in traffic surveys by optimizing the conditions for vehicle axle recognition through artificial intelligence. With current governmental traffic surveys facing issues—particularly the misclassification of freight vehicles in systems employing a 12-category vehicle classification—the research proposes an optimal imaging setup to improve axle recognition accuracy. Field data were acquired at busy intersections using specialized equipment, comparing two camera installation heights under fixed conditions. Analysis revealed that a shooting height of 8.5m combined with a 50°angle significantly reduces occlusion and captures comprehensive vehicle features, including the front, side, and upper views, which are essential for reliable deep learning-based classification. The proposed methodology integrates YOLOv8 for vehicle detection and a CNN-based Deep Sort algorithm for tracking, with image extraction occurring every three frames. The axle regions are then segmented and analyzed for inter-axle distances and patterns, enabling classification into 15 categories—including 12 vehicle types and additional classes such as pedestrians, motorcycles, and personal mobility devices. Experimental results, based on a dataset collected at a high-traffic point in Gwangju, South Korea, demonstrate that the optimized conditions yield an overall accuracy of 97.22% and a PR-Curve AUC of 0.88. Notably, the enhanced setup significantly improved the classification performance for complex vehicle types, such as 6-axle dump trucks and semi-trailers, which are prone to misclassification under lower installation heights. The study concludes that optimized imaging conditions combined with advanced deep learning algorithms for axle recognition can substantially improve vehicle classification accuracy. These findings have important implications for traffic management, infrastructure planning, road maintenance, and policy-making by providing a more reliable and precise basis for traffic data analysis.
        4,000원
        5.
        2024.12 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        본 연구는 자연치유 진단을 위한 대상자의 간호 진단 중재를 적용한 사례 연구로, 대상자의 치유 과정을 이해하고 지원하기 위한 접근 방식이다. NANDA(North American Nursing Diagnosis Association, 북미간호진단 협회)의 간호 진단 분류 체계를 기반으로 한 간호 과정을 수행하고 평가하는 시스템을 통해 자연치유를 선택하는 대상자들의 건강을 돕고자 하였다. 이 사례를 통해 자연치유 진단, 자연치유 수행, 결과, 평가까지 도출하는 과정을 서술적 보고 형식으로 제시하였다. 연구 대상자가 겪고 있는 건강 문제인 불 안에 대해 주관적 및 객관적인 사정 자료를 통해 파생된 건강 문제들을 간 호 진단, 요인 분석, 대상자의 행동 특성 등으로 분류하고, 중재 목표를 설 정하였다. 목표에 대한 결과를 도출하기 위한 중재 요법으로, 몸의 관절 가 동 범위를 넓혀주는 원심도와 싱잉볼 이완 요법을 간호 중재로 선택하여 긍 정적인 결과를 도출하였으며, 이는 앞으로 유사한 환자들에게도 적용할 수 있는 모델이 될 수 있다고 사료된다. 향후 다양한 질환 군에 대한 간호 체계 분류를 적용한 자연치유 중재 효과에 대한 양적 연구의 확대와 장기적인 자 연치유 과정과 그 결과를 평가하기 위한 후속 연구가 필요하다고 보여진다.
        6,700원
        8.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The lane designation and the bus-only lane system for traffic speed and road safety are difficult to crack down on, and for this purpose, crackdown methods using image recognition technologies are being studied. Existing studies require continuous learning or additional equipment, and it is difficult to classify combined vehicles such as vans and pickup trucks. Therefore, in this study, YOLO and EasyOCR were mixed to classify combined vehicles through vehicle type symbols. For combined vehicles, higher accuracy was shown than classification using YOLO. Due to the nature of Hangul, the accuracy was slightly lowered because the OCR was not accurately recognized, but if it is used with the existing YOLO classification, high accuracy of crackdown will be possible.
        4,000원
        9.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : For autonomous vehicles, abnormal situations, such as sudden changes in driving speed and sudden stops, may occur when they leave the operational design domain. This may adversely affect the overall traffic flow by affecting not only autonomous vehicles but also the driving environment of manual vehicles. Therefore, to minimize the traffic problems and adverse effects that may occur in mixed traffic situations involving manual and autonomous vehicles, an autonomous vehicle driving support system based on traffic operation optimization is required. The main purpose of this study was to build a big-data-classification system by specifying data classification to support the self-driving of Lv.4 autonomous vehicles and matching it with spatio-temporal data. METHODS : The research methodology is explained through a review of related literature, and a traffic management index and big-dataclassification system were built. After collecting and mapping the ITS history traffic information data of an actual Living Lab city, the data were classified using the traffic management indexing method. An AI-based model was used to automatically classify traffic management indices for real-time driving support of Lv.4 autonomous vehicles. RESULTS : By evaluating the AI-based model performance using the test data from the Living Lab city, it was confirmed that the data indexing accuracy was more than 98% for the KNN, Random Forest, LightGBM, and CatBoost algorithms, but not for Logistics Regression. The data were severely unbalanced, and it was necessary to classify very low probability nonconformities; therefore, precision is also important. All four algorithms showed similarly good performances in terms of accuracy. CONCLUSIONS : This paper presents a method for efficient data classification by developing a traffic management index to easily fuse and analyze traffic data collected from various institutions and big data collected from autonomous vehicles. Additionally, EdgeRSU is presented to support the driving of Lv.4 autonomous vehicles in mixed autonomous and manual vehicles traffic situations. Finally, a database was established by classifying data automatically indexed through AI-based models to quickly collect and use data in real-time in large quantities.
        4,000원
        10.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        안전은 해군과 같은 위험성이 높은 환경에서 활동하는 조직에게 필수적이다. 효과적인 안전관리는 지속적인 개선과 보완을 통 해 유지되어야 하며, PDCA cycle을 활용하는 것이 일반적이다. 하지만 해군에서는 안전 규정 강화와 교육 확대에도 불구하고 안전사고가 지속적으로 발생하고 있다. 이는 안전사고 분석 및 분류 시스템 개선의 필요성을 보여준다. 본 연구에서는 해군 안전사고 분류체계를 분 석하고 문제점을 파악하여 효과적인 분류체계를 구축하는데 중점을 두었다. 이를 통해 안전사고 결과를 데이터화하고, 사고의 근본 원인 을 파악하며, 중장기적인 안전관리 정책 수립에 기여할 수 있도록 12자리의 해군 안전사고 분류 코드를 제안하였다.
        4,000원
        11.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        세계화, 지방화 시대가 본격화되면서 다양성의 가치가 더욱 중요해지고 있으며, 경쟁단위를 지자체 중 심체제로 전환하는 추세가 뚜렷해지고 있다. 이러한 추세 속에서 최근 가장 주목받는 지역문화자원은 '명승'과 '국가산림문화자산'이다. 산림청은 2014년부터 산림 생태·경관·문화적으로 보존 가치가 높고 역사성이 큰 유·무형의 자산을 국가산림문화자산으로 지정하고 있다. 2022년 11월까지 지정된 국가산 림문화자산은 전국적으로 총 80건이며, 이중 전라북도가 18건에 달하는 반면 충청북도는 하나도 지정 되지 않았다. 이는 지자체의 관심의 차이에서 기인되는 것으로서 각 지자체는 향후 경쟁적으로 도내 자원을 국가산림자산으로 등재하기 위한 후보지 발굴과 등재노력이 한층 강화될 것으로 보인다. 본 연 구는 국가산림문화자산의 정의와 지정기준 검토를 통해 산림자산의 지정기준 및 분류체계 개선, 유산 개념의 세분화, 자산의 지평 확장 방안을 제시하고자 시도되었다. 본 연구의 주제는 산림청이 지정·운 영되는 2022년 11월 30일 기준으로 지정된 산림유산 총 80건과 지정에 따른 분류체계에 대한 검토이다. 특히 본 연구에서는 국가유산청이 지정하는 ‘명승’과 ‘천연기념물’의 기준 및 분류체계과 비교·검토하 였다. 본 연구의 결과는 다음과 같다. 첫째, ‘산림문화자산의 정의’에 대한 검토 결과 국가산림문화자산 중 산림과 관련된 생태적 가치는 ‘천연기념물’의 과학적·학술적 가치와 상충되며, 산림문화자산의 경 관적 가치는 ‘명승’의 경관적 가치와 상충되는 등 산림문화자산과 유사 문화유산 간 가치기준의 혼재가 다수 발견된다. 이는 문화유산 간 반복적인 재지정 및 해제를 초래하며, 추후 혼란을 막기 위해 명확한 기준을 제시해야 한다. 둘째, ‘국가산림문화자산의 지정기준’ 검토결과 문화유산 중 ‘명승’과 ‘천연기 념물’ 그리고 일부 ‘사적’과도 유사한 분류속성을 공유하고 있다. 특히 중분류의 ‘숲’에 해당하는 소분 류 ‘마을숲’은 ‘명승’이나 ‘천연기념물’의 세부분류기준 중 하나인 ‘생활문화 등과 관련되어 가치가 큰 인공 수림지’와 일부 중복되고 있다. ‘자연물’의 옛길, 바위샘, 계곡, 폭포, 동굴, 화석지 등 역시 거의 동 등한 기준으로 분류되고 있다. 또한 ‘사적 및 근대유산’은 명칭 그대로 ‘사적’ 분야와, 정원은 ‘명승’ 분 야와, 그리고 동식물의 ‘화석’은 ‘천연기념물’ 지질분야와 밀착되어 있음을 확인하였다. 셋째, ‘국가산 림문화자산 분류기준’을 검토한 결과 개념상의 변별력 부족으로 인한 차별성 부족과 모호성, 유사 분류 군 간 성격의 불균질성, 조합형의 구체적인 정의 부재로 인한 혼란 등을 지적하였다. 또한 유사 문화유 산과 비교할 때 개념의 충돌, 개념의 소극적 적용 등 문화유산 간 연계 부족을 보였다. 이는 국가적 차원 에서 전반적인 문화유산의 가이드라인을 제시해 각 기관에서 용어 및 개념이 오용되거나 혼용되지 않 도록 해야할 필요가 있다. 또한 조합형 중 ‘기록물+금석각류를 제외하면 금속류는 한 건도 지정되지 않 고 석각류 일색임을 볼 때 향후 지정 추이를 살펴보며 명칭을 수정하거나 성격에 따라 분리를 고려할 필요가 있다. 다섯째, 국가산림문화자산의 분포는 전라북도가 18건(22.5%), 전라남도 17건(21.3%), 강 원도 14건(17.5%), 경상북도 11건(13.8%), 경상남도 7건(8.8%), 경기도 4건(5.00%), 서울특별시와 부산 광역시 그리고 충청남도가 각각 2건(2.5%), 대전광역시와 제주특별자치도 각 1건(1.3%) 순으로 나타났 다. 이에 반해 충청북도는 단 1건도 지정되고 있지 않아 지역적 편중성이 강하게 드러나고 있다. 이는 명승에 비해 지정절차가 간소한데 비해 각 지자체의 산림문화자산에 대한 관심과 유산지정 필요성을 느끼지 못하고 있음을 의미한다. 지자체의 적극성과 산림문화자산 제도의 활성화를 위해 홍보 및 활용 방안에 관한 추가적인 연구가 이루어져야 할 것이다.
        4,200원
        12.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study introduces a novel approach for identifying potential failure risks in missile manufacturing by leveraging Quality Inspection Management (QIM) data to address the challenges presented by a dataset comprising 666 variables and data imbalances. The utilization of the SMOTE for data augmentation and Lasso Regression for dimensionality reduction, followed by the application of a Random Forest model, results in a 99.40% accuracy rate in classifying missiles with a high likelihood of failure. Such measures enable the preemptive identification of missiles at a heightened risk of failure, thereby mitigating the risk of field failures and enhancing missile life. The integration of Lasso Regression and Random Forest is employed to pinpoint critical variables and test items that significantly impact failure, with a particular emphasis on variables related to performance and connection resistance. Moreover, the research highlights the potential for broadening the scope of data-driven decision-making within quality control systems, including the refinement of maintenance strategies and the adjustment of control limits for essential test items.
        4,000원
        14.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        수산자원의 지속 가능한 관리와 증대는 전 세계적으로 중요한 이슈로 부상하고 있으며, 본 연구는 이에 대응하는 한국수산자 원공단의 수산자원 현존량 추정을 위한 딥러닝 기반 수산자원 증대사업 효과조사 기법 개발을 위해 구성 기술 중 하나인 어류 탐지 및 분류 모델 구축과 성능 비교를 수행하였다. 다양한 크기의 YOLOv8-Seg 모델에 어류 이미지 데이터셋을 학습한 후 각 성능평가 지표를 비 교 분석하여 적용 가능한 최적의 모델을 선정하고자 하였다. 모델 구축에 사용된 자료는 총 12종의 어류로 이루어진 36,749장의 이미지와 라벨 파일로 이루어지며, 학습에는 증강을 적용하여 데이터의 다양성을 증가시켰다. 동일한 환경 및 조건에서 총 다섯 개의 YOLOv8-Seg 모델을 학습 및 검증한 결과 중간 크기의 YOLOv8m-Seg 모델이 가장 짧은 13시간 12분의 학습 시간과     0.933, 추론 속도 9.6 ms로 높은 학습 효율성과 우수한 탐지 및 분류 성능을 보였으며, 각 지표 간의 균형을 고려할 때 실시간 처리 요구사항을 충족하는 가장 효율 적인 모델로 평가되었다. 이와 같은 실시간 어류 탐지 및 분류 모델을 활용하여 효율적인 수산자원 증대사업의 효과조사가 가능할 것으 로 보이며, 지속적인 성능 개선 및 추가적인 연구가 필요할 것으로 사료된다.
        4,000원
        16.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Although interest in eco-friendly fashion products is increasing among scholars and industry leaders, the concept of eco-friendly products remains unclear, preventing consistent assessment of which fashion products are eco-friendly. This study conducted a content analysis of eco-friendly product information from 87 domestic and 102 foreign brands to reveal key standards for categorizing eco-friendly fashion products. Product characteristic information was coded according to the four material-based standards (i.e., organic material, regenerative material, alternative material, and sustainably produced/upcycled material). Consistency between coders was confirmed by Cohen’s kappa. In results, eco-friendly fashion products are categorized by four material-based standards and two certification standards (i.e., certified, not certified). Among the four material-based categories, the greatest number of domestic and foreign companies produced eco-friendly products that were classified as the regenerative material group. In addition, companies acquired eco-friendly certifications related to the use of organic, regenerative, and alternative materials. The greatest number of eco-friendly material brands used for eco-friendly fashion products belonged to the regenerative material group. Based on the study results, a typology of eco-friendly products was suggested. This typology can benefit practitioners and academics by highlighting a need for classification system for the eco-friendly fashion products, as well as by providing insight into the categorization of eco-friendly fashion products.
        5,800원
        18.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Hymenobacter 속(genus)은 Bacteroidota 문(phylum), Hymenobacteraceae 과(family)의 대 표 속(type genus)이다. 이 속에 속하는 세균들은 붉은색 색소를 함유하는 그람 음성 간균으로서, 자연 계의 다양한 환경에서 분리되고 있다. 본 연구에서 붉은색 색소를 함유하는 그람 음성 간균이 경남 창 원시 소재 창원대학교 교내의 연못에서 분리되었고, 이 세균은 균주 B2로 명명되었다. 균주 B2를 계통 분석 및 생화학적으로 분석한 결과, Hymenobacter 속에 속하는 것으로 밝혀졌다. 이 세균의 16S rRNA 유전자 염기서열을 genbank의 BLAST로 분석해 본 결과, 다른 어떠한 세균과도 16S rRNA 유전 자 염기서열의 상동성이 새로운 미생물로 인정되는 기준인 98.7%보다 낮은 것으로 나타났다. 균주 B2 의 지방산을 분석해 본 결과, 주된 지방산은 summed feature 3(C16:1 ω7c and/or C16:1 ω6c, 22.8%), iso-C15:0(16.2%), anteiso-C15:0(12.9%), C16:1ω5c(12.4%) 및 summed feature 4 (iso-C17:1 I/anteiso-C17:1)(9.5%)인 것으로 밝혀졌는데, 결과적으로 균주 B2의 지방산 함량은 다른 Hymenobacter 종들의 지방산 함량과 뚜렷한 차이가 있는 것을 알 수 있었다. 이 세균의 16S rRNA 유전자 염기서열 은 genbank에 accession number OQ318247로 등록되었다.
        4,000원
        20.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Korean tariff rate for fishery products is a single tax rate of 10% for live fish and frozen seafood, and 20% for all others. Since FTAs have been concluded with several countries, the tariffs is not an appropriate means to protect domestic fishery producers. The differential tariff rate according to the scientific name (genus) of the fishery products, which was implemented 30 years ago to protect fishery products produced in the Korean coastal waters has lost its original purpose. It seems that future fishery trade policy should focus on IUU prevention, hygiene and safety of consumers rather than protecting fishery producers through customs tariffs. This paper suggest that a paradigm shift in the fishery producers protection policies such as direct financial support from the state, protection and development of fishery resources, and support for fostering the 6th industry rather than indirect protection through tariffs.
        5,100원
        1 2 3 4 5