This study was to evaluate the values of Korean native sweet sorghum as a new feed crop for ruminants. Sweet sorghum was the Muan native species (Bioenergy Crop Research Center, National Institute of Crop Science), and cultivated from May to October 2021 at Sangji University (Wonju-si, Gangwon-do, Korea). There were a non-treated group (Con), a recommended amount treatment (RD) and a treatment with double the recommended amount (Double RD) by an oil cake fertilizer. Plant height was measured at weekly intervals for 12 weeks after planting sweet sorghum seedlings, and was a significant difference in the order of Double RD, followed by RD and Con in 7 weeks (p<0.05). Feed values and sugar contents were measured in 7, 9, and 11 weeks. Crude protein of Double RD was higher than that of the other treatments in 7 and 9 weeks (p<0.05). Crude fat was higher at Double RD than the other one in 9 weeks (p<0.05). ADF and NDF of Double RD were higher than the other one (p<0.05). When it was compared to corn and sudangrass hybrids grown on farms, Crude protein was lower in sweet sorghum than other crops (p<0.05), and crude fat was higher in sweet sorghum than corn (p<0.05). Crude fiber, ADF and NDF were higher in sweet sorghum compared to corn and sudangrass (p<0.05). The sugar contents of sweet sorghum were 4.07 ± 0.12∼7.63 ± 0.21 brix, and showed higher than corn and sudangrass hybrid (p<0.05). The rumen in situ digestibility of sweet sorghum was 30.73∼38.13% at the 9th and 11th weeks, and showed higher than that of corn and sudangrass hybrids (p<0.05). Therefore, it is considered that Korean native sweet sorghum has sufficient value as a new forage crop for ruminants, and good value as yield, nutrients and digestibility, when the grass height is 273.33~332.50 cm.
This study was conducted to evaluate the productivity of whole crop silage wheat utilizing the paddy fields during a couple of years from 2019 to 2021 in Suwon, Korea. This investigation was used the two maturity types of wheat cultivar ‘Cheongwoo’ (early) and ‘Taeu’ (late). The heading date of 2nd year (Oct. 2020 to May. 2021) cultivation was delayed about 11 to 13 days by more than 1st year (Oct. 2019 to May. 2020). The growth characteristics were shown that the plant height was increased in 2nd cultivation, while the number of culms and the panicle part ratio were decreased. Moreover, the nutritive value of ‘Cheongwoo’ and ‘Taeu’ were also decreased in 2nd cultivation. These changes have thought to a difference of the precipitation by cultivation years. Because, the precipitation during the period from the end of winter dormancy to the harvesting stage in 2nd (337 mm) cultivation was more about twice than 1st (169.3 mm) cultivation. However, the dry matter yield of ‘Cheongwoo’ was not shown a statistical difference by cultivation years, while ‘Taeu’ was shown to decrease tendency. The total dry matter yield regardless of the cultivation years were higher in ‘Cheongwoo’ than ’Taeu’, and especially ’Cheongwoo’ was more 3 tons per hectare (15.3 t/ha) than ‘Taeu’ (12.6 t/ha) at 2nd cultivation (p<0.01). The trend of dry weight in ‘Cheongwoo’, early mature type, showed a relatively high ratio of dry matter (p<0.05) was considered that due to a high panicle ratio by a fast heading and an adequate weight of panicles by a sufficient maturing. In conclusion, selecting the early maturity cultivars could achieve a higher and more stable total dry matter yield considering the cropping system in the central region. Furthermore, it also has the advantage of being able to double-cropping system with forage rice, which has considered the maximum whole-crop forage production year-round. These results suggest that the ‘Cheongwoo’ be optimum cultivar to produce the year-round forage on paddy fields in the central region.
This study was to evaluate the feed value of whole crop rice silage (WCRS) and to investigate a suitable ratio of the WCRS and concentrate by an analysis of rumen fermentation. A total of 6 treatments were used according to WCRS: concentrate ratio on in vitro rumen fermentation: T1 (100:0), T2 (60:40), T3 (40:60), T4 (20:80), T5 (10:90), and T6 (0:100). The ruminal pH, total gas emission, ammonia nitrogen, and volatile fatty acid (VFA) were determined as fermentation parameters. Total nutrients digestibility trial was conducted by 4 treatments according to WCRS: concentrate ratio at 40:60 (W40), 20:80 (W20), and 10:90 (W10), respectively. Feed value was analyzed according to AOAC (2019) and nutrient digestibility was calculated based on NRC (2001). The levels of crude protein (CP), crude fat, and neutral detergent fiber of the WCRS were 12.29%, 1.67%, and 59.79%, respectively. It was found to be 51.49% as a result of predicting the total digestible nutrient of WCRS using the NRC (2001) model. In vitro rumen fermentation, T4, T5, and T6 treatments showed a greater gas emission and total VFA concentration compared with other treatments (p<0.05). Acetate and acetate to propionate ratio of T4, T5, and T6 were significantly higher than other treatments (p<0.05). There was a significant difference in the level of propionate and butyrate according to the WCRS: concentrate ratio (p<0.05). The digestibility of dry matter and CP was significantly lower in W40 than in other treatments (p<0.05); however, there was no difference in W20 and W10. In conclusion, the 20:80 (WCRS: concentrate) is beneficial for stabilizing the rumen that does not inhibit rumen fermentation and nutrient digestion. This ratio might have a positive effect on the economics of farms as a valuable feed.
In this study, whole crop rice samples were used to develop near-infrared reflectance (NIR) equations to estimate six forage quality parameters: Moisture, crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), Ash and relative feed value (RFV). A population of 564 whole crop rice representing a wide range in chemical parameters was used in this study. Undried finely chopped whole crop rice samples were scanned at 1 nm intervals over the wavelength range 680–2500 nm and the optical data recorded as log 1/Reflectance (log 1/R). NIRS calibrations were developed by means of partial least-squares (PLS) regression. The correlation coefficients of cross-validation (R2 cv) and standard error of cross-validation (SECV) for whole crop rice calibration were 0.98 (SECV 1.81%) for moisture, 0.89 (SECV 0.50%) for CP, 0.86 (SECV 1.79%) for NDF, 0.89 (SECV 0.86%) for ash, and 0.84 (SECV 5.21%) for RFV on a dry matter (%), respectively. The NIRS calibration equations developed in this study will be useful in predicting whole crop rice quality for these six quality parameters.
Near infrared reflectance spectroscopy (NIRS) has become increasingly used as a rapid and accurate method of evaluating some chemical compositions in forages. The objective of this study was to evaluate the potential of NIRS, applied to imported forage, to estimate the moisture and chemical parameters for imported hays. A population of 392 imported hay representing a wide range in chemical parameters was used in this study. Samples of forage were scanned at 1 nm intervals over the wavelength range 680-2500nm and the optical data was recorded as log 1/Reflectance(log 1/R), which scanned in intact fresh condition. The spectral data were regressed against a range of chemical parameters using partial least squares(PLS) multivariate analysis in conjunction with spectral math treatments to reduced the effect of extraneous noise. The optimum calibrations were selected based on the highest coefficients of determination in cross validation(R2) and the lowest standard error of cross-validation(SECV). The results of this study showed that NIRS predicted the chemical parameters with very high degree of accuracy. The R2 and SECV for imported hay calibration were 0.92(SECV 0.61%) for moisture, 0.98(SECV 0.65%) for acid detergent fiber, 0.97(SECV 0.40%) for neutral detergent fiber, 0.99(SECV 0.06%) for crude protein and 0.97(SECV 3.04%) for relative feed value on a dry matter(%), respectively. Results of this experiment showed the possibility of NIRS method to predict the moisture and chemical composition of imported hay in Korea for routine analysis method to evaluate the feed value.
This study was carried out to explore the accuracy of near infrared spectroscopy(NIRS) for the prediction of moisture content and chemical parameters on winter annual forage crops. A population of 2454 winter annual forages representing a wide range in chemical parameters was used in this study. Samples of forage were scanned at 1nm intervals over the wavelength range 680-2500nm and the optical data was recorded as log 1/Reflectance(log 1/R), which scanned in intact fresh condition. The spectral data were regressed against a range of chemical parameters using partial least squares(PLS) multivariate analysis in conjunction with spectral math treatments to reduced the effect of extraneous noise. The optimum calibrations were selected based on the highest coefficients of determination in cross validation(R2) and the lowest standard error of cross-validation(SECV). The results of this study showed that NIRS calibration model to predict the moisture contents and chemical parameters had very high degree of accuracy except for barely. The R2 and SECV for integrated winter annual forages calibration were 0.99(SECV 1.59%) for moisture, 0.89(SECV 1.15%) for acid detergent fiber, 0.86(SECV 1.43%) for neutral detergent fiber, 0.93(SECV 0.61%) for crude protein, 0.90(SECV 0.45%) for crude ash, and 0.82(SECV 3.76%) for relative feed value on a dry matter(%), respectively. Results of this experiment showed the possibility of NIRS method to predict the moisture and chemical composition of winter annual forage for routine analysis method to evaluate the feed value.
This study was conducted to evaluate the forage production and feed value of Sasa borealis (S. borealis) in Jeju Island in order to improve the utilization of Sasa borealis and to help mitigate the problem of reduced plant species diversity caused by S. borealis in Hanlla Mountain. To investigate the forage production, three quadrat structures were installed in the S. borealis natural community in the middle part of Hanlla Mountain. From May to October 2017, S. borealis in quadrats was cut at a fixed time of each month, and then forage production and regenerated acidity per kg/ha were evaluated. For the evaluation of feed value, compositional analysis was performed on the monthly samples. In vitro digestion experiments were carried out using cannula mounted Hanwoo. In vitro neutral detergent fiber digestibility(IVNDFD) and in vitro acid detergent fiber digestibility(IVADFD) were measured after the experiment. Forage production of S. borealis showed relatively good regeneration ability in May and June, but the regeneration ability decreased as the cutting was repeated. In order to use S. borealis as a forage, it is considered efficient to feed black goats with good fiber decomposition or horses good palatability to S. borealis and relatively good digestibility.
This experiment was conducted to obtain information of feed value and fermentative quality of wheat cultivar, ‘Taejoong’ to confirm availability as a whole crop silage. As a result, the heading date of ‘Teajoong’ is April 27, and plant height is longer than whole crop barley, ‘Youngyang’ or whole crop wheat, ‘Cheongwoo’, spike length are also large, fresh and dry matter yield are also high. In case of feed value, ‘Taejoong’ had higher crude protein content than whole crop barley, ‘Youngyang’ or whole crop wheat, ‘Cheongwoo’, lower NDF and ADF contents, and significantly higher digestible nutrient contents(p<0.05). In case of fermentation qulity, pH of ‘Taejoong’ was 4.2, and lactic acid content was lower than ‘Cheongwoo’ silage and significantly higher than ‘Youngyang’ silage(p<0.05). Acetic acid content was significantly lower than ‘Youngyang’ and ‘Cheongwoo’ silage(p<0.01), butyric acid content was significantly lower than that of ‘Youngyang’ silage (p<0.05). The final Flieg's score showed that ‘Taejoong’ silage was the best. Also income of ‘Taejoong’ improved than ‘Youngyang’ or ‘Cheongwoo’. Therefore, ‘Taejoong’ is considered sufficiently available as whole crop for forage.
본 연구는 흑염소 사육을 활성화하고 경영의 효율성을 높일 수 있는 산지초지의 활용성 제고를 위한 기초자료를 제공하기 위하여 우리나라 흑염소 방목 이용 농가(20호)에 대한 실태조사를 실시하였다.
야초지로 이루어진 방목지의 경우 계절별 초지 생산성이 여름에 가장 높았으며(p<0.05), 봄철과 가을철에는 급격하게 저하되었다. 반면 목초지로 이루어진 방목지의 초지 생산성은 봄철에 가장 높은 생산성을 나타냈으며 가을철에 생산성이 다소 저하(p<0.05)되긴 하였지만, 대체적으로 계절별 생산성의 차이가 야초지 방목지에 비해 완만하여 비교적 안정적인 생산성을 나타내고 있었다. 계절별 방목지 초지의 사료가치 비교 결과 목초지의 경우 계절에 상관없이 안정적인 건물함량을 나타냈고, 야초지는 봄에서 가을로 갈수록 건물함량이 증가하는 경향을 보였다. 조단백질 함량은 목초지의 경우만 가을철에 증가하였고(p<0.05), 야초지의 경우에는 봄에 비해 여름과 가을에 감소하는 경향을 보였다(p<0.05). 목초지의 경우 야초지에 비해 상대적으로 조지방 함량은 높고 조섬유소 함량은 낮은 경향을 나타냈다. 계절에 따른 농장별 흑염소의 일당증체량은 농장별 초지 생산성 및 초지관리 기술에 따라 다양한 차이가 나타났다.
결과적으로 흑염소 사육의 활성화와 경영의 효율을 높이기 위하여 방목 야초지를 우수한 사료가치를 가지고 있을 뿐 아니라 계절별 생산성의 변화도 적은 방목 목초지로 갱신 및 조성을 해 나가야 할 필요성이 있으며, 산지초지의 효율적 이용을 위해서 초지관리 기술의 메뉴얼화와 보급으로 초지 생산성의 개선을 추구할 수 있는 방안이 필요할 것으로 사료된다.