해운산업은 국가 경제와 조선산업 발전에 필수적이며 주요 해양강국들은 해 운산업을 보호하기 위해 정책적 지원을 지속적으로 시행해 왔다. 우리나라 또 한 해운산업과 조선산업이 공생하는 구조로 정책적 지원이 필수적이었으나 해 당 지원은 선박 건조에만 집중되었고 선박을 운항하는 선원들의 근무 여건은 개선되지 않았다. 이와 같은 선원들의 근무 여건은 장시간 노동, 휴식 방해, 휴 일 없는 근로 등으로 인해 선원의 기본적인 권리를 침해하고 있으나 선원법이 최소한의 규정이라는 명목 아래 노사 합의를 유도하면서 선원들을 방치하였다. 이와 같은 불합리한 근무환경이 오랜 기간 지속되면서 선원들은 승선을 기피하 게 되었고 선원구인난에 따라 해운산업의 위기로 이어졌다. 선원의 근로는 선박이라는 사업장에 지속적으로 체류하며 단 하루의 휴일도 없이 선박소유자의 이익을 위해 근무하는데 선박 내에서 체류하는 모든 시간이 적절하게 평가 받지 못하고 임금을 계산하기 위한 근로시간만 존재한다. 또한 현실적으로 선원의 초과근로를 제한할 수 있는 제도적인 장치가 미비하여 선원 의 과로를 방지할 수가 없으며, 선박소유자의 지시와 명령으로부터 선원을 보 호할 수가 없다. 이는 노사 간 합의를 바탕으로 이루어진 승선이라고 할지라도 대등하지 못한 협상력을 이용한 선박소유자의 수용가능성에 집중한 결과물일 뿐이지 선원들의 근로를 정당하게 평가했다고 할 수는 없다. 따라서 본 논문에서는 선원들이 선박에서 체류하는 시간들을 승선시간, 실근 로시간, 대기시간, 휴식시간과 같이 세부적으로 구분하고 해당 시간들에 대한 입법론적으로 보완할 수 있는 사항을 검토하였다. 아울러 선원들의 근로여건이 더 이상 노사 간의 합의의 영역이 아니라 법률적으로 보호받을 수 있도록 법적 개선방안을 제시하였다.
본 연구는 도로 관리 주체의 Scope-3 배출량을 포함한 교량의 탄소 배출량을 정량적으로 산정하는 것을 목표로 한다. 기존의 탄소 배출량 산정 방식은 주로 직접 배출(Scope-1)과 간접 배출(Scope-2)에 초점을 맞추었으나, 도로 및 교량과 같은 사회간접자본(SOC) 시설에서 발생하는 Scope-3 배출량을 포함하는 종합적인 평가가 필요하다. 이를 위해 HDM-4 모델을 활용하여 교량의 노면 상태(IRI, Roughness)에 따른 연료 소비량 변화를 분석하였으며, PSC BEAM교를 대상으로 사례 연구를 진행하였다. 연구에서는 공기 저항, 구름 저항, 구배 저항 등의 주요 동력 저항 요소를 고려하여 연료 소비량을 산정하였으며, 이를 통해 단위시간당 연료소모량(IFC)과 총 연료 소비량을 평가하였다. 연구 결과, 도로 관리 주체가 교량 운영 단계에서 발생하는 Scope-3 배출량을 정확히 평가하는 것이 전체 탄소 배출량 산정에서 중요한 요소임을 확인하였다. 본 연구는 향후 도로 및 교량 설계, 유지보수 단계에서 탄소 저감 전략을 수립하 는 기초 자료로 활용될 수 있을 것으로 기대된다.
국제사회는 1992년 유엔기후변화협약(UNFCCC), 1997년 교토의정서, 2015년 파리협정, 2018년 IPCC ‘1.5℃ 특별보고서’ 채택을 통하여 온실가스 감축 목표를 세워 기후 문제에 대응하고자 하였다. 이러한 흐름에 대한민국은 2020년 ‘2050 탄 소중립 선언 및 비전을 선포하였고, 2021년 탄소중립기본법을 제정하였다. 이중 도로 건설도 환경영향평가의 대상으로 설정하여 인프라 시설물의 탄소중립에 노력을 기울이고 있다. 하지만 2011년 국토교통부의 ‘시설물별 탄소배출량 산정 가이드라인’ 외 구체적인 생애주기 분석 방법이 부재한 상황이며 기수행된 연구에서는 전과정이 아닌 특정 수명주기에 집중하였던 단점이 존재하였다. 특히 수명주기 중 사용단계는 시설물 이용, 유지관리, 에너지 및 용수 사용 등의 내용을 포함하며 2023년 세계 경제 포럼은 사용단계의 탄소배출량이 평균적으로 전체 탄소배출량의 70%를 차지한다고 발표하였 기 때문에 사용단계의 탄소배출량을 산정하는 것은 중요하다. 따라서 본 연구에서는 국제 표준 ISO 21930:2017의 전과정 평가 LCA(Life Cycle Assessment) 방법과 국토교통부의 ‘시설물별 탄소배출량 산정 가이드라인’을 따라 국내 탄소배출 계수를 기반으로 도로건설 전과정의 생애주기 구분을 하였고, 탄소배출량을 산정하였다. 이를 통해 국내 환경영향평가 방법의 보완에 기여하고자 한다.
중앙버스전용차로는 일반 도로 대비 높은 교통량과 반복적인 축하중이 작용하는 구간으로, 정차 및 출발 과정에서 발생 하는 국부적인 응력 집중으로 인해 포장 파손이 빈번하게 발생한다. 그러나 기존 도로 설계에서는 정적인 교통량을 기준 으로 축하중을 산정하여, 실제 교통 환경에서의 버스 유형별 차이, 재차 인원, 시간대별 하중 변화 등 동적인 요소를 충 분히 반영하지 못하는 한계가 존재한다. 이에 본 연구에서는 대중교통 빅데이터를 활용하여 중앙버스전용차로의 버스 유 형 및 시간대별 재차 인원을 반영한 새로운 축하중 산정 모델을 개발하였다. 이를 위해 서울시 열린 데이터 광장의 교통 정보를 활용하여 버스 유형 및 시간대별 재차 인원 데이터를 수집하고, 카카오맵 및 네이버 로드뷰 데이터를 이용해 결 측치를 보완하여 데이터셋을 구축하였다. 구축된 데이터셋을 활용하여 기존 ESAL(Equivalent Single Axle Load) 방식과 비교 분석한 결과, 새로운 축하중 모델에서는 기존 방식 대비 평균 111.8% 높은 축하중이 산정되었으며, 일부 구간에서 는 최대 128.9%까지 차이가 발생하는 것으로 나타났다. 이는 기존 포장 설계가 중앙버스전용차로의 실질적인 교통 하중 을 충분히 반영하지 못하고 있음을 시사하며, 추가적으로 버스 중하중의 가·감속의 영향을 고려한다면, 시간대별·노선별 실시간 축하중 변화를 보다 정밀하게 분석할 수 있으며, 이를 통해 과소 산정된 설계 하중을 보완하고 포장 공용성을 향 상시킬 수 있는 최적의 설계 및 유지보수 전략 수립이 가능할 것으로 기대된다.
Speed management in Korea currently emphasizes the setting of speed limits and controlling vehicle speeds to align with these standards. However, monitoring safe and stable speeds tailored to specific road sections is essential for enhancing pedestrian safety in urban areas. In this study, a crash frequency model was developed to define the speed stability range and identify the critical threshold at which the crash frequency changes rapidly. This threshold serves as a reference point for assessing the speed stability levels. Individual vehicle trajectory data collected from 20 road segments in Daejeon-si were used to calculate the speed-related safety evaluation indicators that served as input variables for the safety model. The speed stability range calculation incorporates speed-related indicators and road facility data from Daejeon-si, allowing the model to consider the surrounding infrastructure. The findings revealed that intersections and crosswalks are positively correlated with cumulative crash occurrences. Crash frequency predictions showed higher crash likelihoods at average driving speeds below 30 km/h, indicating that congested conditions at intersections or at peak times necessitate increased safety management. Measures for maintaining safe and appropriate vehicle speeds within identified safe ranges are critical. The speed stability range calculation methodology provides a foundation for establishing traffic safety management strategies that focus on speed control in urban areas. These results can guide the development of targeted safety interventions that prioritize pedestrian protection and optimize safe driving speeds across various road segments.
This study presents a seismic fragility assessment methodology incorporating the cumulative damage effects of repeated seismic loading on structures. Conventional seismic fragility assessment methods typically focus on single earthquakes across multiple structures; however, seismic events often occur in sequences, with each event adding cumulative damage that can amplify the overall damage. Ignoring the effects of repeated earthquakes in fragility assessments may lead to underestimating seismic risk. This study proposes a simplified but efficient fragility assessment method that accounts for repeated earthquake effects using probabilistic combinations of each damage state. This procedure applied the capacity spectrum method to consider capacity degradation from displacement caused by prior earthquakes. Applying various earthquake scenarios, this study analyzes the effects of damage accumulation from earthquake occurrence sequences, structural behavior types, and seismic design levels on the fragility of structures under repeated earthquake events.
The management of pollutant emissions from industrial sites involves various crucial steps, including estimating emission quantities and assessing their impact on surrounding areas. While emissions from point sources, such as exhaust outlets, are relatively easier to manage, emissions from area sources, such as workshops and livestock facilities, are often challenging to measure due to various constraints. To address this issue, this study proposes a method for estimating emissions from area sources by utilizing data collected at site boundaries and applying a reverse modeling approach. Using data from actual livestock facilities, along with reverse modeling results, this study identified a strong correlation between the facility area and the number of livestock raised. Correlation analyses revealed positive relationships between the facility area and the average odor emission rate, as well as between the number of livestock and the average odor emission rate. In addition, the results of reverse modeling confirmed a significant correlation between odor emissions, the number of livestock, and the facility area. Based on these findings, this study developed an odor emission factor for livestock facilities using the number of livestock and the facility area as activity indicators. The odor emission factor is expressed in units of OU/s/pig/m², where “OU” represents odor units, “s” denotes seconds, “pig” corresponds to the number of livestock, and “m²” refers to the total facility area. By multiplying the number of livestock by the facility area, the total odor emission rate (OU/sec) can be calculated. Unlike traditional emission factors that rely solely on the number of livestock, this newly developed factor incorporates all facilities contributing to odor emissions within a livestock operation. This approach allows for the estimation of odor emissions using external measurement data and facility information, even in cases where direct measurements are impractical. The results of this study are expected to be effectively utilized for odor evaluation and management in livestock facilities.
A study was conducted to evaluate the proper particle cleaned air changes per hour (PCH) in apartment buildings and school classrooms. The concept of PCH was newly introduced. The PCH can be expressed as the clean air delivery rate (CADR) per space volume. The PCH includes the filtering effect with air changes per hour (ACH). A method for calculating the proper PCH was theoretically proposed and experimentally verified. The proper PCH to effectively control ultrafine particles in apartments and school classrooms was found to be 4.0/h and 4.2/h, respectively. In general, air cleaners and mechanical ventilation devices are often used together in apartments and school classrooms. In such cases, it is important to consider the proper PCH of each device and control it for energy-efficient operation. In addition, in times of concern for infection such as COVID-19, it will be necessary to operate the PCH at 6.0/h or more to minimize the probability of infection.
Recently, high-rise residential buildings in Korea have adopted slender shear walls with irregular section shapes, such as T-shape, H-shape, and C-shape. In the seismic design of the slender shear walls, the transverse reinforcement for lateral confinement should be provided in the boundary elements to increase deformation capacity and subsequent ductility. However, in practice, the irregularity of the shear walls is not adequately considered, and the lateral confinement region is calculated for the rectangular wall segments. This study investigated the proper design method for lateral confinement regions using finite element analysis. The lateral confinement region was considered in analysis for two cases: 1) as a typical rectangular wall segment and 2) as an irregular wall. When the irregularity of the walls was considered, the compression zone depth was increased because the vertical reinforcement in the flange was addressed. The effect of lateral confinement design methods on the structural performance of the walls was directly compared under various design parameters, including the length of the flange, concrete compressive strength, vertical rebar layout, axial load ratio, and loading direction. According to the results of the parametric analysis, the peak strength and deformation capacity could be significantly increased when the lateral confinement region was calculated based on irregularly shaped walls, regardless of the design parameters. In addition, the effective compression zone was located within the lateral confinement region. Thus, it is recommended that the lateral confinement region of T-shaped walls is calculated by addressing the irregularity of the walls.
최근 정부는 노동정책의 일환으로 노동시간과 임금체계 개편을 추진하고 있다. 그러나 제조업 교대제 사업장에서 근무하는 상당수 생산직들은 여전히 노동시간과 연동된 시급제를 적용받고 있다. 이런 실정 에서 정부는 노동시간과 임금체계를 연계하지 않고 각각의 영역에서 따로 변화를 추진하고 있어 정책의 실효성에 의문이 제기되고 있다. 본 연구는 자동차부품업과 전기전자업 사례를 통해 교대제와 임금산정방식 사이의 관계를 살펴보고, 교대제 개편이 이루어질 경우 임금산정방식이 시급제에서 월급제로 전환 가능성을 모색하였다. 분석 결과, 첫째 월급제 친화적인 교대제가 일부 존재하고, 둘째 노동시간 단축과 동시에 월급제를 시행하면 과거로 되돌아가지 않으려는 비가역성(irreversibility)이 높으며, 셋째 월급제 시행으로 인해 수당이 간소화 되고 기본급과 수당의 통합되는 임금구성의 합리화 효과가 발생하였음을 발견하였다. 한편, 월급 제 시행과 노동자들의 근태 사이의 상관성이 낮아 교대제와 임금산정방식의 변화에 있어서 사용자 반대 를 완화하고 노사간 이해 조정 가능성을 확인하였다. 이런 분석 결과를 바탕으로 교대제 사업장 개편과 임금산정방식인 시급제를 월급제로 전환하기 위한 다양한 정책적 시사점을 도출하고 향후 연구과제를 제안했다.
PURPOSES : This study investigated an appropriate saw-cut time frame for jointed concrete pavements. Rectangular slabs (400–500 × 500 × 150 mm) were prepared for saw-cutting tests, and experimental specimens were made using different mixes (type I cement, slag, Fly ash, high early strength cement, etc.) and temperature curing conditions (10, 20, and 25 ℃ as well as variable field conditions). METHODS : A prototype saw-cut device was manufactured to avoid unwarranted joint cutting using uncontrolled saw-cut equipment. The setting times were determined using Proctor penetration resistance (PR) and Ultrasonic pulse velocity (UPV) tests. The setting times were converted to setting maturities. To link the setting time of the concrete with the initiation time for saw cutting, successive parallel cuts were performed on the rectangular slabs for all mixes. A series of saw-cutting attempts were made between the final setting time and the time when the raveling index (denoted by R) exceeded a value of 2. Reconstructed images of the saw-cut segments were then analyzed using ImageJ, which is a commonly used, open-source software tool. RESULTS : Considering the PR and UPV settings, the final setting of the PR test was adopted as the basis for the correlation curve. The saw-cutting maturity at R = 2 was correlated with the setting maturity of each mix and curing condition. CONCLUSIONS : The relationship between the saw-cutting maturity and setting maturity was represented by a lower limit line, based on the test results of this study. The coefficient of determination (R2) for the test was 0.74, indicating that the proposed PR test at the final setting and image-based techniques provided an optimal method by which to determine the saw-cut initiation time. Another upper limit line can be introduced by using the HYPERPAV software tool for any concrete mix under diverse curing conditions..
블로우업이 발생하는 구간에 ASR이 발생하고 있지만, 한국도로공사는 재료팽창인 ASR을 고려하지 않고, 콘크리트 팽창량을 계산하 여 팽창줄눈 설치간격을 제시하고 있다. 또한, 블로우업은 일종의 좌굴현상이므로 슬래브 두께에 따라 응력완화줄눈 설치 간격을 제시 할 필요가 있다. 따라서 본연구는 재료팽창과 슬래브 두께를 고려하여 응력완화줄눈 설치 간격을 제시하고자 한다. 팽창량 계산시, 재 료변형률과 지역별 온도와 건조수축을 고려하였으며, 이를 동등한 팽창을 유발하는 온도상승량으로 변환하는 식을 도출하였다. 기준온 도를 정하기 위해 실제 현장데이터를 팽창량 식에 대입하여 온도상승량으로 변환하였으며, 이를 블로우업을 모사한 콘크리트 포장 모 형의 유한요소해석 결과를 이용하여 결과값을 비교하였다. 안전설계를 위해 더 작은 온도 값인 블로우업 구조해석 결과 값 중 안전온 도를 블로우업이 일나는 기준으로 선정하였으며, 안전 온도를 넘지 않은 지역별 슬래브 두께에 따른 최대 응력완화줄눈 설치 간격을 제시했다. 한국도로공사가 제시하고 있는 기준과 비교한 결과, 일부 지역은 한국도로공사에서 제시하고 있는 기준에 만족하지 않았다. ASR 변형률을 고려하여 슬래브 두께에 따라 지역별로 응력완화줄눈 설치 간격을 제시하는 것이 블로우업 파손을 저감하고, 포장의 안정성을 향상시키는데 도움이 될 것이라고 판단된다.
This study aims to propose a simplified equation for estimating the bond strength of corroded reinforcing bars. To this end, extensive parametric analyses were performed using the detailed analysis method presented in the authors’ previous study, where a wide range of critical variables were considered, such as compressive strength of concrete, net cover thickness, and reinforcing bar diameter. The sensitivity in bond strength of the corroded reinforcing bar according to each variable was evaluated. On this basis, a simplified formula for the bond strength of the corroded reinforcing bar was derived through regression analysis. The proposed equation was rigorously tested and verified using the bond test results of corroded reinforcing bars collected from the literature. The results confirmed that the proposed equation could estimate the bond strengths of specimens with better accuracy than the existing models, providing a reliable tool for engineers and researchers. In addition, the proposed equation was used to analyze the development length required for corroded tensile reinforcement to exert its yield strength, and it showed that the cover thickness of concrete must be at least four times the diameter of the reinforcing bar to achieve the yielding strength of reinforcing bar even at a corrosion degree of more than 5.0%.
Due to seismically deficient details, existing reinforced concrete structures have low lateral resistance capacities. Since these building structures suffer an increase in axial loads to the main structural element due to the green retrofit (e.g., energy equipment/device, roof garden) for CO2 reduction and vertical extension, building capacities are reduced. This paper proposes a machine-learning-based methodology for allowable ranges of axial loading ratio to reinforced concrete columns using simple structural details. The methodology consists of a two-step procedure: (1) a machine-learning-based failure detection model and (2) column damage limits proposed by previous researchers. To demonstrate this proposed method, the existing building structure built in the 1990s was selected, and the allowable range for the target structure was computed for exterior and interior columns.
It is important to measure the performance of group project but also very important to evaluate the contribution of individual members fairly. The degree of contribution of group members can be assessed by pair-wise comparison method of the Analytic Hierarchy Process. The degree of contribution of group members can be biased in a way that is advantageous to evaluator oneself during the pair-wise comparison process. In this paper, we will examine whether there is a difference in the contribution weight vectors obtained when including evaluator and excluding oneself in the pair-wise comparison. To do this, the experimental data was obtained by making pair-wise comparison in two ways for 15 5-person groups that perform term projects in university classes and 15 pairs of weight vectors for contribution were obtained. The results of the nonparametric test for these 15 pairs of weights vectors are given.
As the number of enlistees decreases due to social changes like declining birth rates, it is necessary to conduct research on the appropriate recalculation of the force that considers the future defense sufficiency and sustainability of the Army. However, existing research has primarily focused on qualitative studies based on comprehensive evaluations and expert opinions, lacking consideration of sustained support activities. Due to these limitations, there is a high possibility of differing opinions depending on perspectives and changes over time. In this study, we propose a quantitative method to calculate the proper personnel by applying system dynamics. For this purpose, we consider a standing army that can ensure the sufficiency of defense between battles over time as an adequate force and use battle damage calculated by wargame simulation as input data. The output data is the number of troops required to support activities, taking into account maintenance time, complexity, and difficulty. This study is the first quantitative attempt to calculate the appropriate standing army to keep the defense sufficiency of the ROK Army in 2040, and it is expected to serve as a cornerstone for adding logical and rational diversity to the qualitative force calculation studies that have been conducted so far.
PURPOSES : The skid resistance between tires and the pavement surface is an important factor that directly affects driving safety and must be considered when evaluating the road performance. In especially wet conditions, the skid resistance of the pavement surface decreases considerably, increasing the risk of accidents. Moreover, poor drainage can lead to hydroplaning. This study aimed to develop a prediction equation for the roughness coefficient—that is, an index of frictional resistance at the interface of the water flow and surface material—to estimate the thickness of the water film in advance to prevent human and material damage. METHODS : The roughness coefficient can be changed depending on the surface material and can be calculated using Manning's theory. Here, the water level (h), which is included in the cross-sectional area and wetted perimeter calculations, can be used to calculate the roughness coefficient by using the water film thickness measurements generated after simulating specific rainfall conditions. In this study, the pavement slope, drainage path length, and mean texture depth for each concrete surface type (non-tined, and tined surfaces with 25-mm and 16-mm spacings) were used as variables. A water film thickness scale was manufactured and used to measure the water film thickness by placing it vertically on top of the pavement surface along the length of the scale protrusion. Based on the measured water film thickness, the roughness coefficient could be back-calculated by applying Manning's formula. A regression analysis was then performed to develop a prediction equation for the roughness coefficient based on the water film thickness data using the water film thickness, mean texture depth, pavement slope, and drainage path length as independent variables. RESULTS : To calculate the roughness coefficient, the results of the water film thickness measurements using rainfall simulations demonstrated that the water film thickness increased as the rainfall intensity increased under N/T, T25, and T16 conditions. Moreover, the water film thickness decreased owing to the linear increase in drainage capacity as the mean texture depth and pavement slope increased, and the shorter the drainage path length, the faster the drainage, resulting in a low water film thickness. Based on the measured water film thickness data, the roughness coefficient was calculated, and it was evident that the roughness coefficient decreased as the rainfall intensity increased. Moreover, the higher the pavement slope and the shorter the drainage path length, the faster the drainage reduced the water film thickness and increased the roughness coefficient (which is an indicator of the friction resistance). It was also evident that as the mean texture depth increased, the drainage capacity increased, which also reduced the roughness coefficient. CONCLUSIONS : As the roughness coefficient of the concrete road surface changes based on the environmental factors, road geometry, and pavement surface characteristics, we developed a prediction equation for the concrete pavement roughness coefficient that considered these factors. To validate the proposed prediction equation, a sensitivity analysis was conducted using the water film thickness prediction equation from previous studies. Existing models have limitations on the impact of the pavement type and rainfall intensity and can be biased toward underestimation; in contrast, the proposed model demonstrated a high correlation between the calculated and measured values. The water film thickness was calculated based on the road design standards in Korea—in the order of normal, caution, and danger scenarios—by using the proposed concrete pavement roughness coefficient prediction model under rainy weather conditions. Specifically, because the normal and caution stages occur before the manifestation of hydroplaning, it should be possible to prevent damage before it leads to the danger stage if it is predicted and managed in advance.
In the seismic evaluation of underground utility tunnels, selecting an analytical method is critical to estimating reasonable seismic responses. In simplified pseudo-static analysis methods widely applied to typical seismic design and evaluation of underground tunnels in practice, it is essential to check whether the methods provide valid results for cut-and-cover tunnels buried in shallow to medium depth. The differences between the two simplified pseudo-static methods are discussed in this study, and the analysis results are compared to those obtained from FLAC models. In addition to the analysis methods, seismic site classification, overburden soil depth, and sectional configuration are considered variables to examine their effects on the seismic response of underground utility tunnels. Based on the analysis results, the characteristics derived from the concepts and details of each simplified model are discussed. Also, general observations are made for the application of simplified analysis methods.
PURPOSES : This study aims to calculate the estimation of travel time saving benefits from smart expressway construction by considering the willingness to pay for automated vehicles. METHODS : In this study, data were collected from 809 individual drivers through a stated preference survey. A multinomial logit model was constructed to analyze the choice behavior between arterial roads, expressways, and smart expressways. Through this, the values of time and benefits were estimated. RESULTS : The value of time was calculated at 19,379 won per vehicle per hour for arterial roads and expressways and 23,061 won per vehicle per hour for smart expressways. Applying these values to the Jungbu Naeryuk expressway, we evaluated the demand change and benefits resulting from the improvement to the smart expressways. The results show that the traffic volume on the Jungbu Naeryuk expressway is expected to increase by 4.7% to 20.7% depending on the changes in capacity. CONCLUSIONS : The travel time saving benefits are estimated as positive, resulting from the construction of smart expressways. The benefits resulting from the construction of new smart expressways are expected to be enhanced due to the anticipation of more significant time-saving effects.
PURPOSES : The study aims to establish a comprehensive life cycle assessment model for bridges in South Korea considering domestic carbon emission factors. The main aims are to evaluate the carbon emission of bridge construction, focusing on the Seong-ri Bridge as a case study, and to improve national environmental policies and management strategies. METHODS : We utilized the life cycle assessment (LCA) methodology, adhering to standards set by ISO, to categorize each phase of the bridge's life cycle. The process involved selecting the bridge type based on the compilation of a detailed analysis range. The analysis covered various stages from raw material supply (A1-A3) to construction (A4-A5) and maintenance (B2-B5), excluding certain stages due to data unavailability. Carbon emission factors were then applied to quantify emissions at each stage. RESULTS : The findings indicate that the raw material production phase (A1-A3) contributes to approximately 96% of the total carbon emissions, highlighting its significant impact. We report detailed calculations of emissions using domestically developed emission factors for materials such as steel and concrete and establish a carbon emission per unit length measure for comparative analysis with other infrastructure. CONCLUSIONS : We leveraged LCA ISO standards to analyze each stage of the Seong-ri bridge, calculating its carbon emissions based on domestic factors for CO2, CH4, and N2O. By tailoring the study to Korea-specific emission factors, we develop a greenhouse gas model closely aligned with the nation’s environmental conditions. The results contribute to improving environmental impact assessments and strategically aiding national policy and management decisions.