조선 후기 붉은 안료 ‘왜주홍’은 위계성을 갖는 특수한 물질이었다. 왜주홍이 사용된 곳은 왕실 최고위 신분층과 관련한 것으로 한정되었는데, 국가 의례에서조차 쉽게 사용되지는 못 했다. 왜주홍은 위계성을 갖는 물질이었던 만큼, 임금은 왕실 행사에서 자신의 권위와 위계성을 강조하는 목적으로 직접 왜주홍을 내하(內下) 하기도 하였다. 왕은 자신의 왕위 계승의 정당 성을 표방하고 정치적 입지를 굳히고자, 스스로 주최하는 국가 행사에서 ‘왜주홍’의 사용량 을 특별히 늘리고자 하였고, 이것은 간혹 위계에 따른 물질 사용의 규율 범위를 넘어서기도 하였다. 이를 밝히기 위해, 논문에서는 먼저 문헌을 통해 왜주홍이 ‘위계성을 갖는 물질’임을 설명 한다. 문헌을 통해 주묵정칠(朱墨正漆) 사용의 신분층과 실제 왕실로 들어온 왜주홍의 양이 많지 않았던 사실을 근거로 제시한다. 이어서 ‘위계성을 갖는 왜주홍의 활용’에 관해 집중적으로 살펴보았다. 1725년~대한제 국선포 이전(1894년, 고종 31) 기간의 349건 의궤에서 왜주홍 사용량을 추출하여 데이 터화하고 이를 기초자료로 삼았다. 그리고 자료에서 왜주홍이 특별하게 많이 사용된 국가 행 사를 선별하여, 그 행사의 시대적 배경과 행사 주최자인 왕의 의도를 파악하고자 한 것이다. 그 시대적 배경을 요약하면 다음과 같다. 1) 임금의 생부와 생모가 왕이나 왕후에 오르지 못했을 때 그 위계를 높이고자 하는 경우, 2) 수렴청정했거나 임금 자신의 즉위를 도왔던 왕후의 위계를 높여 왕권을 강화시키고자 하는 경우, 3) 임금이 수렴청정에서 벗어나 친정하게 된 것을 표방하거나 즉위 30년을 자축하는 경우, 4) 왕실 고위 신분층들의 연향, 5) 임금의 임어(臨御) 건물 영건 등으로 요약할 수 있었다. 이를 통해, ‘왜주홍’은 왕실에서 위계와 권위를 표방하는 ‘특수 물질로써 활용’되었음을 확인할 수 있었다.
In this study, an Co/Fe coated porcelain using a cobalt and ferrous sulfate was sintered at 1,250 oC. The specimens were investigated by HR-XRD, FE-SEM (EDS), Dilatometer, and UV-vis spectrophotometer. The surface of the porcelain was uniformly fused with the pigment, and white ware and celadon body specimens were densely fused to a certain thickness from the surface. Other new compounds were produced by the chemical reaction of cobalt/ferrous sulfate with the porcelain body during the sintering process. These compounds were identified as cobalt ferrite spinel phases for white ware and white mixed ware, and an andradite phase for the celadon body, and the amorphous phase, respectively. As for the color of the specimens coated with cobalt and ferrous mixed pigments, it was found that the L* value was greatly affected by the white ware, and the a* and b* values were significantly changed in the celadon body. The L* values of the specimens fired with pure white ware, celadon body, and white mix ware were 72.1, 60.92, 82.34, respectively. The C7F3 pigment coated porcelain fired at 1,250 oC had L* values of 39.91, 50.17, and 40.53 for the white ware, celadon body, and white mixed ware, respectively; with a* values of -1.07, -2.04, and -0.19, and at b* values of 0.46 and 6.01, it was found to be 4.03. As a new cobalt ferrite spinel phase was formed, it seemed to have had a great influence on the color change of the ceramic surface.
A high NIR-reflective black pigment is developed by Mn doping of Fe2O3. The pigment powders are prepared by spray pyrolysis, and the effect of the Mn concentration on the blackness and optical properties is investigated. Mn doping into the crystal lattice of -Fe2O3 is found to effectively change the powder color from red to black, lowering the NIR reflectance compared to that of pure Fe2O3. The pigment doped with 10% Mn, i.e., Fe1.8Mn0.2O3, exhibits a black color with an optical bandgap of 1.3 eV and a Chroma value of 1.14. The NIR reflectance of the prepared Fe1.8Mn0.2O3 black pigment is 2.2 times higher than that of commercially available carbon black, and this material is proven to effectively work as a cool pigment in a temperature rise experiment under near-infrared illumination.
The objectives of this study were to evaluate the removal characteristics of total nitrogen, the influence factor of denitrification and the optimum operating condition in the pigment wastewater treatment using PAC-A/O process. The operating conditions of PAC-A/O process were mean BOD volumetric loading 0.86 kgBOD/m3/day, mean F/M ratio 0.072∼0.13 kgBOD/kgMLVSS/day and mean C/N ratio 3.47, respectively. The conditions of anoxic process in the field plant test were mean pH 8.3∼8.7 and mean temperature 34.1~44.0℃. The ORP bending point knee was eventually appeared in the ORP -107 mV and NO3 --N removal efficiency was increased according to the ORP decrease. In the ORP -107 mV below condition, the removal efficiency of T-N and NO3 --N was 92.3∼95.0% and 98.5∼99.7%. Denitrification rate was calculated to be 1.581∼1.791 mg NO3 --N/gMLSS/hr. The experimental results showed that the ORP control in the PAC-A/O process could be an effective method for treatment of pigment wastewater.
전통회화에 사용된 각종 색 재료 즉 유기, 무기안료나 염료는 온도, 습도, 빛, 그리고 대기 오염에 의한 각종 화학 물질 등과 직접 반응하여 탈․변색을 유도하기도 하고, 안료와 결합된 각종 수지의 열화에 의해 손상되기도 한다. 본 연구에서는 조선종이라고 불리는 한지에 석록, 석청 무기 안료를 사용해 인위적인 노화시험을 시행하면서, 동시에 전시 관에 전시를 통해 환경 요인으로 인한 자연적 노화시험을 수행하였다. 인위적인 노화와 자연적인 환경시험에 의해 일어 난 화학적인 변화는 자외선-가시광선 분광기와 FT-IR, TGA, XRD을 통해 측정하였고, 전통회화의 변색은 색차계와 video microscope로 관찰하였다. 이를 통해 석록이 포함된 전통회화의 변색은 대기 중의 산도와 자외선에 의해 일어났음을 알 수 있었다.
In this study, an α-Fe2O3 (hematite) coated porcelain plate was sintered in a temperature range from 1100 oC to 1250 oC using ferrous sulfate. The specimens were investigated by X-ray diffractometer (XRD), scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), and UV-visible spectrophotometer. It was confirmed that α-Fe2O3 (hematite) was densely fused to the surface at several tens of μm, the α-Fe2O3 (hematite) was in the form of thin platelet and polyhedra, and no other compounds appeared in the sintering process. In the specimen coated with α-Fe2O3 (hematite), the reflectance spectra show a red absorption band of 560-650 nm. The L* value decreased from 53.18 to 46.94 with the firing temperature. The values of a* and b* were at 19.03 and 15.25 at 1100 oC and gradually decreased with increasing temperature; these values decreased rapidly at 1250 oC to 11.54 and 7.98, respectively. It is considered that the new phases are formed by the phase transition of the porcelain plate (clay), and thus the a* and b* values are greatly influenced.
Ink-jet printing techniques with ceramic ink, which contains ceramic pigments as colorant, are in increasingly use in the ceramic industry. Generally, ceramic pigments that are produced by conventional method show diameters of several micrometers; these micrometer sized particles in the ink-jet printing process can cause undesirable behavior such as print head nozzle clogging. To prevent this problem, a particle size reduction process is required. In this study, CMYK (cyan, magenta, yellow, black) pigments were synthesized via solid state method. Each pigment particle was milled to submicron size by an attrition mill. The effects of micronizing on the morphology, mechanical property, crystal structure and color property of the CMYK ceramic pigments were investigated by field emission scanning electron microscopy (FE-SEM), particle size analysis (PSA), X-ray diffraction (XRD) and CIE L*a*b*.
In this work, we synthesize brilliant yellow color α-FeOOH by controlling the rod length and core-shell structure. The characteristics of α-FeOOH nanorods are controlled by the reaction conditions. In particular, the length of the α-FeOOH rods depends on the concentration of the raw materials, such as the alkali solution. The length of the nanorods is adjusted from 68 nm to 1435 nm. Their yellowness gradually increases, with the highest b* value of 57 based on the International Commission on Illumination (CIE) Lab system, by controlling the nanorod length. A high quality yellow color is obtained after formation of a silica coating on the α-FeOOH structure. The morphology and the coloration of the nal products are investigated in detail by X-ray diffraction, scanning electron microscopy, UV-vis spectroscopy, and the CIE Lab color parameter measurements.
PURPOSES : This study was conducted to derive the optimum mixing ratio of phosphorescent pigment for the development of phosphorescent line marking.
METHODS: In this study, we utilized a literature review and case study methodology, to describe the domestic and foreign state of practice for the production and mixing of phosphorescent pigment for use in line marking. The optimal mixing ratio was derived by comparing the reduction in luminance over time for the various phosphorescent pigment mixing ratios identified in the literature. In addition, performance and construction characteristics were analyzed using field testing techniques.
RESULTS : The results were as follows: 1) the results of the luminance performance standards tests showed that all of the phosphorescence test specimens satisfied the phosphorescent fire protection standard. As the phosphorescent pigment mixing ratio increased, the luminance value increased, 2) the luminance reduction rate was minimum at the mixing ratio of 50%. However, when compared to a mixing ratio 40%, a small difference was recorded, the luminance reduction rate from the mixing ratio of 40% is judged as being converged. Therefore, in view of the economic efficiency, it was determined that the optimal mixing ratio was 40%, 3) as a result of construction on the field, a mixing ratio of 40% was found to have a higher luminance value than the general line marking for up to three hours after sunset, 4) it was found that the phosphorescent line markings without glass beads spraying had a higher luminance value than the phosphorescent line markings with glass beads spraying.
CONCLUSIONS : Through the results of the basic experiments of the line markings obtained by blending a phosphorescent pigment, the results could be applied to play an important role in the development of phosphorescent line marking paint technology and in establishing application planning for on-site construction characteristics.
인류는 아름다움을 추구하는 경향이 있으며, 진주는 부와 신분의 상징으로 수 천년 동안 많 은 사람들의 사랑을 받아 왔다. 현재의 인조진주는 밝은 색감을 갖고 코팅공정이 쉬운 유기색소를 이용 하였으나, 낮은 내후성 및 내구성과 천연진주의 고급스러운 광택 표현의 어려움으로 인해 새로운 코팅 기술이 필요한 실정이다. 본 연구는 코팅 결합제로 니트로셀룰로오스와 우레탄을 이용하였고, 색감을 표 현하기 위하여 무기 펄 안료를 사용하였다. 니트로셀룰로오스와 용매의 비, 우레탄과 경화제의 비, 펄의 첨가량, 코팅 횟수, 건조 온도 등의 실험변수를 조절하여 실험을 진행하였다. 코팅 된 인조진주는 색차 계, 자외선, 촉진내후성 등의 특성을 분석하였고, 우레탄을 이용한 경우 내약품성 및 내후성이 니트로셀 룰로오스 보다 뛰어난 것을 확인하였다.
NiAl2O4 nanoparticle was synthesized by a reverse micelle processing for inorganic pigment. N (NO3)2·6H2O and Al(NO3)3·9H2O were used for the precursor in order to synthesize NiAl2O4 nanoparticles. The aqueous solution, which consisted of a mixing molar ratio of Ni/Al, was 1:2 and heat treated at 800~1100 oC for 2h. The average size and distribution of synthesized NiAl2O4 powders are in the range of 10-20 nm and narrow, respectively. The average size of the synthesized NiAl2O4 powders increased with an increasing water-to-surfactant molar ratio and heating temperature. The crystallinity of synthesized NiAl2O4 powder increased with an increasing heating temperature. The synthesized NiAl2O4 powders were characterized by X-ray diffraction analysis(XRD), a field emission scanning electron microscop (FE-SEM), and a color spectrophotometer. The properties of synthesized powders were affected as a function such as a molar ratio and heating temperature. Results indicate that synthesis using a reverse miclle processing is a favorable process to obtain NiAl2O4 spinels at low temperatures. The procedure performed suggests that this new synthesis route for producing these oxides has the advantage of being fast and simple. Colorimetric coordinates indicate that the pigments obtained exhibit blue colors.
Fe2O3 coated plate mica(Fe2O3/mica) for infrared reflectance red pigment was prepared under hydrothermal treatment. Fe2O3 was perfectly coated on mica via the difference of surface charge between Fe2O3 and mica particles at pH 3. Fe2O3/mica was then calcined at 800 oC to stabilize the coated layer on mica. The infrare (IR) reflectance pigments were characterized by X-ray diffraction, FE-SEM, zeta potential, and a UV-Vis-NIR spectrophotometer. In particular, the CIE color coordinate and IR reflectance properties of Fe2O3/mica pigments were investigated in relation to the thickness variation of the Fe2O3 layer coated on mica of various lateral sizes. The isolation-heat red paints containing the pigments were prepared and optimized with a thinner, settling agent, and dispersant. Then, the films were made. The thermal property of isolation-heat on these films was observed through the relationship of the IR reflectance value, which was based on the variation of the Fe2O3 layer’s thickness coated on mica and mica’s lateral size as IR reflectance pigment. With an increase in IR reflectance on these films, the thermal property of isolation-heat was effectively enhanced.
This work describes the coloration, chemical stability of SiO2 and SnO2-coated blue CoAl2O4 pigment. The CoAl2O4, raw materials, were synthesized by a co-precipitation method and coated with silica (SiO2) and tin oxide (SnO2) using sol-gel method, respectively. To study phase and coloration of CoAl2O4, we prepared nano sized CoAl2O4 pigments which were coated SiO2 and SnO2 using tetraethylorthosilicate, Na2SiO3 and Na2SiO3 as a coating material. To determine the stability of the coated samples and their colloidal solutions under acidic and basic conditions, colloidal nanoparticle solutions with various pH values were prepared and monitored over time. Blue CoAl2O4 solutions were tuned yellow color under all acidic/basic conditions. On the other hand, the chemical stability of SiO2 and SnO2-coated CoAl2O4 solution were improved when all samples pH values, respectively. Phase stability under acidic/basic condition of the core-shell type CoAl2O4 powders were characterized by transmission electron microscope, X-ray diffraction, CIE L*a*b* color parameter measurements.
Inorganic pigments have high thermal stability and chemical resistance at high temperature. For these reasons, they are used in clay, paints, plastic, polymers, colored glass and ceramics. CoAl2O4 nano-powder was synthesized by reverse-micelle processing the mixed precursor(consisting of Co(NO3)2 and Al(NO3)3). The CoAl2O4 was prepared by mixing an aqueous solution at a Co:Al molar ratio of 1:2. The average particle size, and the particle-size distribution, of the powders synthesized by heat treatment (at 900; 1,000; 1,100; and 1,200˚C for 2h) were in the range of 10-20 nm and narrow, respectively. The average size of the synthesized nano-particles increased with increasing water-to-surfactant molar ratio. The synthesized CoAl2O4 powders were characterized by X-ray diffraction analysis(XRD), field-emission scanning electron microscopy(FE-SEM) and color spectrophotometry. The intensity of X-ray diffraction of the synthesized CoAl2O4 powder, increased with increasing heating temperature. As the heating temperature increased, crystal-size of the synthesized powder particles increased. As the R-value(water/surfactant) and heating temperature increased, the color of the inorganic pigments changed from dark blue-green to cerulean blue.
This study analyzes and compares Hanji made with loess to Hanji made with kaolin, two yellow-based inorganic pigments, in terms of its physical properties, optical properties, and color fastness to light with the aim of using it as a fashion material. Hanji made by adding inorganic pigments showed an approximately 20% retention ratio on average. This figure was similar to those of loess and kaolin. Physical properties were analyzed, with the following results. A higher amount of additives lowered the apparent density and increased thickness and bulk. In general, inorganic pigment-added Hanji had lower tensile strength, bursting strength, and folding endurance compared to non-additive Hanji. The analysis of optical properties showed a lower brightness index for Hanji made with inorganic pigments compared to non-additive Hanji. When comparing the two inorganic pigments, the brightness of Hanji made with kaolin was higher. Regarding color fastness to light, loess showed level 4 and kaolin showed level 5 when 25% inorganic pigments on pulp were added to Hanji. Thus, Hanji made by adding inorganic pigments during the manufacturing process may perform well as materials for fashion because the additives enhanced both the color fastness to light and the bulk while maintaining the strength. In addition, Hanji dyed with inorganic pigments may have the potential to serve as materials for the fashion industry while still retaining the characteristics of Hanji.
NiO-doped hibonite pigments were synthesized by the solid state method to get stabilized blue color pigment inboth oxidation and reduction atmospheres. Optimum substitution condition with NiO for hibonite blue pigment was investigated.Experimental results were comparable to those of previous cobalt-minimization studies performed with other phosphate- oroxide-based cobalt-containing ceramic pigments (having olivine (Co2SiO4), spinel (CoAl2O4), or with co-doped willemite((Co,Zn)2SiO4) structures). Composition was designed varying the NiO molar ratio increasing with SnO2. The optimumsubstitution content is 0.93mole NiO with 0.75mole SnO2. The characteristics of the synthesized pigment were analyzed byXRD, Raman spectroscopy, SEM, and UV-vis. Synthesized pigment was applied to a lime-barium glaze with 10wt% each andfired at an oxidation atmosphere of 1250oC/1h and a reducing atmosphere 1240oC/1h. Blue color was obtained with L*a*b*values at 43.39, −6.78, −18.20 under a reducing atmosphere and 41.66, −6.36, −14.7 under and oxidation atmosphere, respectively.
Fe4[Fe(CN)6]3 coated on a mica or TiO2/mica surface as infrared reflective blue pigment was prepared by a hydrothermal method. Fe4[Fe(CN)6]3, used as coloring agent, was uniformly coated on mica or TiO2/mica under the optimized condition of a 1.2 : 1 weight ratio between iron(III) chloride hexahydrate and potassium ferrocyanidetrihydrate at the initial pH level of 4.5 at 70˚C. The infrared (IR)-reflective pigments were characterized by SEM, Zeta-potenial, FT-IR, and UV-VIS NIR spectrophotometry. Especially the CIE color coordinate and total solar reflectance(TSR) properties of the pigments were investigated in relation to variation of the coating and coated substrate thicknesses. Isolation-heat paint was prepared with 20 wt% blue pigments fully dispersed in acryl-urethane resin and several additives to coat the film uniformly. The films were also measured with CIE color coordinate, TSR, and the surface temperature was recorded by an isolation-heat measuring system. The pigments and films of Fe4[Fe(CN)6]3 coated on mica and TiO2/mica showed high TSR values compared with the TSR value of Fe4[Fe(CN)6]3 itself. According to the increase of TSR value, the property of isolation-heat is effective. To realize the optimal blue color, we applied the the pigment to TiO2 coated mica(TM(b)) which has blueish interference color. The pigment of Fe4[Fe(CN)6]3 coated on TM(b) shows a strong blue color compared with that of Fe4[Fe(CN)6]3 coated on TiO2/Mmca(TM(w)), which has a whitish interference color.
무지개 빛을 내는 무기진주광택안료는, 내광성, 내용제성 및 내열성 등이 물리적 화학적 안정성이 우수하여 다양한 분야에서 응용되고 있다. 본 연구는 수열합성방법을 사용하여 마이카 티타니아에 파란색 코팅 안료인 염화코발트를 기본으로 화장품 안료로 사용되는 진주광택안료를 합성하였다. 코발트에 의한 안료의 색상을 보완하고자 코발트와 금속 염의 비를 달리하여 안료를 코팅하고, 이를 통해 금속염의 종류에 따라 다양한 색차값을 구현하는 진주광택 안료를 합성하였다. 코발트와 첨가된 금속 염 전구체의 조성비와, 금속 염의 종류에 따라 코팅 특성과 색상을 조절할 수 있었고, 안료의 다양한 색상변화 특성을 색차계를 통해 확인 하였다. 합성된 안료는 SPM, SEM, XRD, EDS 기기를 통해 특성을 분석하였다.
We collected Seokganju minerals (regions in Gyeryong Mountain, Sangsin-ri, Banpo-myeon, GongjuChungcheongnam-province), which were used as natural color pigments for grayish-blue during the 15th~16th centuries of theJoseon era, and investigated their crystallographic features to develop a black pigment having a spinel structure. By a Ramananalysis, the color of Seokganju under transparent glaze as a pigment for painting was black because hematite (Fe2O3) inSeokganju was converted to magnetite (Fe3O4) However, Seokganju into the transparent glaze as a pigment was brown becauseof hematite (Fe2O3) and small amounts of maghemite (γ-Fe2O3) in Seokganju minerals. Only Seokganju mineral is used, it isnot suitable for black pigment into the transparent glaze. This study tried to develop a spinel crystal black pigment stabilizedby Seokganju with CoO, Cr2O3, NiO, and MnO2 at 1280oC. A Raman spectroscopy analysis was performed to verify thepresence of Mn The results showed that it existed as spinel, and two crystal phases CoFe2O4 and MnFe2O4 were mixed.CoFe2O4 spinel has a dark grayish black color and Mn2O4 spinel has a greenish black color, and these two appeared as black.The color of a specimen calcined by adding 6wt% of pigment mixed with 5wt% of MnO2 added to lime glaze was analyzedwith a UV spectrophotometer. When applying the color pigment, it appeared black stabilized with L*24.23, a* 0.12, b* −2.29at 1260oC oxidative calcination, With 1240oC reduction firing, it is appeared black stabilized with low brightness of L* 23.13,a* −1.12, b* 0.54.
무기안료는 인체에 대한 안정성과 다른 소재와의 상용성이 우수하며, 미적 특성을 감미하기 위한 화장품, 인쇄잉크, 페인트, 건설자재 등 다양한 분야에서 관심 받고 있다. 본 논문에서는 망간과 철이 도핑된 이산화티탄 안료를 합성하기 위하여 수열합성법을 이용하였다. 공정 변수로는 망간 전구체의 양, 철 전구체의 양 및 하소온도 등을 변화시켰다. 제조된 안료의 최적 조건은 망간 전구체의 양이 1.0wt%, 철 전구체의 양이 1.5wt% 그리고 하소온도 550℃일 때였다. 제조된 안료는 XRD, EDS, FE-SEM, Spectrophotometer, UV-Vis Spectrometer 등으로 분석 하였다.