The purpose of this study was to compare the efficiency of air and oxygen injected into the underwater non-thermal dielectric barrier discharge plasma (DBD plasma) device used to remove five types of antibiotics (tetracycline, doxycycline, oxytetracycline, clindamycin, and erythromycin) artificially contained in the fish farm discharge water. The voltage given to generate DBD plasma was 27.8 kV, and the measurement intervals were 0, 0.5, 1, 2, 4, 8, 16 and 32 minutes. Tetracycline antibiotics significantly decreased in 4 minutes when air was injected and were reduced in 30 seconds when oxygen was injected. After the introduction of air and oxygen at 32 minutes, 78.1% and 95.8% of tetracycline were removed, 77.1% and 96.3% of doxycycline were removed, and 77.1% and 95.5% of oxytetracycline were removed, respectively. In air and oxygen, 59.6% and 83.0% of clindamycin and 53.3% and 74.3% of erythromycin were removed, respectively. The two antibiotics showed lower removal efficiency than tetracyclines. In conclusion, fish farm discharge water contains five different types of antibiotics that can be reduced using underwater DBD plasma, and oxygen gas injection outperformed air in terms of removal efficiency.
This study investigated the degradation characteristics and biodegradability of phenol, refractory organic matters, by injecting MgO and CaO-known to be catalyst materials for the ozonation process-into a Dielectric Barrier Discharge (DBD) plasma. MgO and CaO were injected at 0, 0.5, 1.0, and 2 g/L, and the pH was not adjusted separately to examine the optimal injection amounts of MgO and CaO. When MgO and CaO were injected, the phenol decomposition rate was increased, and the reaction time was found to decrease by 2.1 to 2.6 times. In addition, during CaO injection, intermediate products combined with Ca2+ to cause precipitation, which increased the COD (chemical oxygen demand) removal rate by approximately 2.4 times. The biodegradability of plasma treated water increased with increase in the phenol decomposition rate and increased as the amount of the generated intermediate products increased. The biodegradability was the highest in the plasma reaction with MgO injection as compared to when the DBD plasma pH was adjusted. Thus, it was found that a DBD plasma can degrade non-biodegradable phenols and increase biodegradability.
This objective of this study was to investigate the degradation characteristics of phenol, a refractory substance, by using a submerged dielectric barrier discharge (DBD) plasma reactor. To indirectly determine the concentration of active species produced in the DBD plasma, the dissolved ozone was measured. To investigate the phenol degradation characteristics, the phenol and chemical oxygen demand (COD) concentrations were evaluated based on pH and the discharge power. The dissolved ozone was measured based on the air flow rate and power discharged. The highest dissolved ozone concentration was recorded when the injected air flow rate was 5 L/min. At a discharge power of 40W as compared to 70W, the dissolved ozone was approximately 2.7 – 6.5 times higher. In regards to phenol degradation, the final degradation rate was highest at about 74.06%, when the initial pH was 10. At a discharged power of 40W, the rate of phenol decomposition was observed to be approximately 1.25 times higher compared to when the discharged power was 70W. It was established that the phenol degradation reaction was a primary reaction, and when the discharge power was 40W as opposed to 70W, the reaction rate constant(k) was approximately 1.72 times higher.
자외선(ultraviolet, UV) 처리와 유전체 방벽 방전 콜드 플라스마(dielectric barrier discharge cold plasma, CP) 처리는 다양한 식품 살균 기술로서 연구되고 있다. 하지만 각 처리를 단독으로 사용하였을 때, 분말 식품에 오염된 미생물 저해수준에 있어 한계가 있다. 따라서 본 연구에서는 UV와 CP를 병합한 처리를 개발하여 개발된 처리의 통후추 미생물 저감효과를 확인하고자 하였다. UV-CP 처리 시 UV의 처리 전력은 6 W와 30 W였고 처리 시간은 10분, 15분, 그리고 20분이었다. 통후추의 수분활성도는 0.2, 0.4, 0.7, 0.8, 그리고 0.9 aW로 조절되었다. CP 처리 시 사용된 플라스마 형성 가스는 헬륨이었고, 유속은 36 L/min이었다. CP 처리의 frequency와 처리 전압은 각각 15 kHz와 10 kV였다. 통후추의 수분활성도에 따른 미생물 저해 효과 확인을 위한 실험의 UV 처리 전력과 처리 시간은 각각 30W와 20분이었다. UV-CP 처리는 UV의 전력에 따라 미생물 저해 정도에 유의적으로 영향을 미치지 않았다(p>0.05). UV-CP 처리 시 처리 시간이 10분, 15분 그리고 20분으로 증가할 때 미생물 저해 정도는 각각 0.4 ± 0.1, 0.9 ± 0.3 log CFU/sample, 그리고 1.4 ± 0.2 log CFU/sample로 유의적으로 증가하였다(p<0.05). 통후추의 수분활성도가 0.2일 때 미생물 저해 정도는 0.2 ± 0.2 log CFU/sample로 가장 낮았고, 수분활성도가 0.4, 0.7, 0.8, 그리고 0.9일 때 미생물 저해 정도는 각각 1.4 ± 0.1, 1.2, 1.3, 1.3, 1.3 log CFU/sample 이었다. 본 연구를 통해 UV-CP 처리의 주요 파라미터인 UV 처리 전력, 처리 시간, 그리고 통후추의 수분활성도를 조절함으로써 통후추에 존재하는 토착 미생물을 효과적으로 저해시킬 수 있음을 알아내었다.
즉석조리식품 제품의 포장 후(in-package) 미생물 저해 기술로 대기압 콜드 플라스마에 대한 연구가 활발하게 진행되고 있다. 본 연구에서는 대기압 유전체 장벽 방전 콜드 플라스마(atmospheric dielectric barrier discharge cold plasma, ADCP)를 이용하여 코팅된 닭 가슴살 시료의 색도에 영향을 미치지 않고 Salmonella 저해를 최적화시키는 처리 전압과 시간을 결정하였다. 닭 가슴살을 삶은 후 1.5x1.5x1.5 cm의 큐브로 준비한 후 유청 분리 단백질로 코팅하여 처리 시료를 준비하였고 살균된 polyethylene terephthalate 용기 (16.3X12.5x3.5 cm)에 12개의 코팅된 닭 가슴살 큐브 처리 시료를 담고 28, 29, 30, 31, 또는 32 kV 의 처리 전압과 120, 150, 180, 210, 214, 또는 240초 처리하였다. 모든 ADCP 처리에서는 처리 중 45초 간격으로 15초씩 shaking이 이루어졌다. 32 kV에서 닭 가슴살 시료에 절연파괴(dielectric breakdown, arc)가 발생했으나 arc 발생은 닭가슴살 시료의 색 변화를 일으키지 않았다. 29, 30, 그리고 31 kV의 처리 또한 닭 가슴살 큐브의 색도에 유의적인 영향을 미치지 않았다(p>0.05). Salmonella 저해율은 처리 전압이 29, 30, 그리고 31 kV 일 때 1.5 0.1, 1.4 0.2, 그리고 1.9 0.0 log CFU/cube이었으며 31 kV 에서 ADCP 처리가 29, 30 kV에서 처리 보다 닭 가슴살 시료의 Salmonella를 더 효과적으로 저해시켰다(p<0.05). 처리 시간을 변수로 하였을 때, 31 kV 에서 180초 처리가 120초, 150초, 210초, 그리고 240초 처리했을 때보다 유의적으로 높은 Salmonella 저해 정도를 보였다(p<0.05). 연구에 사용된 arc를 발생하지 않은 전압과 시간 조건은 색도에 영향을 주지 않으면서 Salmonella를 효과적으로 저해하는 것을 알 수 있었으며 이때 미생물 저해 효과를 보여주는 최대 전압과 시간은 각각 31 kV, 180초로 결정되었다.
감귤의 세척 후 오염 및 포장 후 품질 저하를 예방하기 위하여 활성칼슘 용액(0.2%, w/w, highly activated calcium oxide/distilled water, CaO 용액) 세척 후 가스치환포장(modified atmosphere packaging, MAP)을 하고 대기압 유전체 장벽방전 콜드 플라스마(atmospheric dielectric barrier discharge cold plasma, ADCP)처리를 하는 과채류 살균 통합 시스템을 개발하였다. 처리 방법은 MAP(2% CO2,10%O2)및 공기 포장(0.03% CO2,21%O2)하여 처리 전압 26.4 kV에서 2분 동안 ADCP 처리하거나, CaO 용액에 3분 동안 침지 후 건조시킨 감귤을 MAP 및 공기 포장하여 처리 전압 26.4 kV에서 2분 동안 ADCP처리 한 것이었다 (CaO-ADCP). 각각의 처리된 감귤 시료들을 4 °C에서 35일, 그리고 25 °C에서 14일간 저장하여 포장 방법에 따른 ADCP 처리된 감귤과 CaO-ADCP 처리된 감귤의 저장 중 이화학적 특성에 대한 영향을 확인하였다. 저장 일자 별로 저장 온도와 처리 방법에 상관없이 MAP된 감귤과 공기 포장된 감귤 간 호흡률은 차이를 보이지 않았고, 포장 내부의 가스농도를 효과적으로 유지하였으며 4 °C 저장 중 과육의 당도를 효과적으로 유지하였다(p<0.05). 포장 방법에 상관없이 CaO-ADCP 처리된 감귤이 무처리와 단독으로 ADCP 처리된 감귤보다 호흡률이 낮았고, 무처리와 단독 ADCP 처리된 감귤보다 더 효과적으로 포장 내부의 가스 농도를 유지하였으며 과육의 당도 유지에 효과적이었다(p<0.05). MAP와 CaO-ADCP 처리는 감귤의 pH, 적정산도, 색도, ascorbic acid, 그리고 과육 및 과피의 총 폴리페놀 함량과 항산화능에 영향을 미치지 않았다. 본 연구를 통해 CaO 세척, MAP, 그리고 ADCP 처리가 병합으로 이루어지는 살균 통합 시스템이 감귤의 저장성을 향상시킬 수 있는 기술로서의 가능성을 확인할 수 있었다.
식품 내 단백질, 지방, 수분의 조성 비율이 dielectric barrier discharge atmospheric cold plasma (DBD-ACP)처리 시 색도, 물성 및 Salmonella 저해에 미치는 영향을 연구하였다. 연구에 사용한 모델 식품의 재료는 분리대두단백분말(isolated soy protein powder, ISP), 대두유, 증류수(distilled water, D.W.)이며, 중심합성법을 이용해 반응표면분석법으로 설계한 모델 식품 제조의 고정변수는 단백질 함량(15.5 g (w/w))이고 독립변수는 대두유 함량(0.5-13.5 g (w/w))과 D.W. 함량(30-55.6 g(w/w))이었다. 모델 식품은 1.5 cm3 크기의 cube로 잘라 상업용 플라스틱 포장재(18 × 14 × 2.5 cm, polyethylene)중앙부에 한 개씩 배치하여 DBD-ACP 처리하였다. 색도 측정기와 texture profile analysis 실험을 통해 DBD-ACP 처리 전후의 색도와 전단응력(g)을 측정하였다. 또한 모델 식품의 조성에 따른 DBD-ACP 처리의 Salmonella 저해에 미치는 영향을 확인하였다. Salmonella 저해(reduction)는 반응표면분석의 종속변인으로 측정하였다. 모델 식품의 조성에 따라 DBD-ACP 처리 전후의 색도와 전단응력(g)은 모든 조성에서 유의적인 차이를 보이지 않았다(P>0.05). DBD-ACP 처리 시 Salmonella 저해에 적합한 모델 식품의 최적 조성은 반응표면분석법으로 확립하였으며, 그 비율은 단백질 15.5 g, 지방 8.2 g, 수분 50.3 g 이었다. 본 연구를 통해 식품의 단백질, 지방, 수분의 조성은 DBD-ACP 처리를 이용한 식품의 색도 및 물성에 영향을 주지 않는다는 것을 확인하였고, DBD-ACP 처리 시 Salmonella 저해를 위한 모델 식품의 최적 조성 비율을 확립하였다.
유전체 장벽 방전 대기압 플라스마(dielectric barrier discharge atmospheric plasma, DACP) 처리 시 용기 내 시료 표면적 크기의 Salmonella 저해에 대한 효과와, 시료의 쌓인 정도에 따른 Salmonella의 저해 효과가 삶은 닭 가슴살(boiled chicken breast, BCB) 큐브로 연구되었다. DACP 처리 시 로메인 상추와 BCB 큐브가 함께 포장된 혼합 식품의 Salmonella 저해에 대한 효과 또한 연구되었다. DACP 처리 시 용기 내 시료의 부피는 같고, 표면적의 크기를 달리하는 실험을 위해 4조각(1.5 × 1.5 × 1.5 cm, 4 g, 2 × 2)과 1조각(3.0 × 3.0 × 1.5 cm, 16 g)의 BCB 큐브가 각각 준비되었다. 시료의 쌓인 정도에 따른 DACP 처리의 균일성 확인 실험을 위해, 단층의 시료로 9조각(1.5 × 1.5 × 1.5 cm, 4 g, 3 by 3), 복층의 시료로 단층의 9조각 위에 쌓여진 4조각(2 × 2)의 BCB 큐브가 준비되었다. 또, 혼합 식품의 DACP처리를 위한 시료로 로메인 상추 3조각(1개, 2 g) 위에 8조각의 BCB 큐브(4 × 2)가 준비되었다. 모든 시료는 플라스틱 용기에 넣어 DACP 형성 전압 38.7 kVp to p에서 3.5분동안 처리되었다.DACP 처리는 용기 내 큐브의 표면적의 크기가 작은 시료와 큰 시료의 Salmonella를 각각 2.8 ± 0.1 log CFU/큐브와 2.4 ± 0.4 log CFU/큐브 저해 시켰다(P > 0.05). DACP 처리는 9개 그리고 13개로 쌓인 큐브의 Salmonella를 각각 1.0 ± 0.4 - 1.7 ± 0.9 log CFU/큐브 그리고 1.5 ± 0.0 - 2.0 ± 0.3 log CFU/큐브 저해 시켰고, 큐브가 쌓인 정도에 관계없이, 쌓인 위치에 관계없이 Salmonella를 균일하게 저해 시켰으며(P > 0.05), 큐브의 색과 표면미세구조에 영향을 미치지 않았다(P > 0.05). DACP 처리는 혼합식품의 로메인 상추와 BCB 큐브의 Salmonella를 각각 1.3 ± 0.1 - 1.5 ± 0.2 log CFU/g과 1.4 ± 0.4 - 2.1 ± 0.5 log CFU/큐브 저해 시켰고, 로메인 상추와 BCB 큐브가 놓여진 위치에 관계없이 각 시료의 Salmonella를 균일하게 저해시켰다(P > 0.05). DACP 처리는 여러 개의 닭 가슴살 큐브에 접종된 Salmonella를 물리적인 손상 없이 살균하였고, 닭 가슴살 샐러드 제품을 살균할 수 있는 가능성을 보여주었다.
상업적 플라스틱 포장재에 포장된 삶은 닭 가슴살 큐브의 Salmonella 저해에 대한 유전체 장벽 방전 콜드 플라스마(dielectric barrier discharge cold plasma, DBD-CP) 처리의 최적 조건을 결정하는 연구와, DBD-CP 처리 시 닭 가슴살 큐브에 접종한 E. coli O157:H7, Salmonella, 그리고 L. monocytogenes의 초기 접종 농도의 저해 효과와 품질 특성에 미치는 영향을 연구하였다. 유청 분리 단백질로 코팅된 혹은 코팅되지 않은 닭 가슴살 큐브(1.5 × 1.5 × 1.5 cm, 3.8 g)에 Salmonella(~4 log CFU/큐브)를 감염시켜 상업적 플라스틱 컨테이너(18 × 14 × 2.8 cm)에 포장하였고 포장된 시료를 저해에 대한 콜드 플라스마(CP) 형성 전압(25-40 kV)과 처리 시간(2-5분)을 변수로 하여 살균 최적화 실험을 수행하였다. 닭 가슴살 큐브의 지방 산패도, 색, 그리고 조직감에 대한 영향도 함께 연구하였다. 또한, Salmonella 살균 처리 최적 조건을 이용한 CP처리의 E. coli O157:H7, Salmonella, L. monocytogenes (~4 log CFU/큐브 or ~5 log CFU/큐브), 그리고 norovirus의 surrogate인 Tulane virus (TV) (~3 log PFU/cube) 저해에 대한 효과를 관찰하였다. DBD-CP처리는 단백질이 코팅된 혹은 코팅되지 않은 Salmonella를 각각 3.8 ± 0.3 log CFU/큐브 그리고 1.4 ± 0.4 log CFU/큐브 저해 시켰고, 표면이 매끄러운 코팅된 시료의 Salmonella 저해율이 유의적으로 높았다(p < 0.05). Salmonella 저해를 위한 최적의 DBD-CP처리 전압과 시간은 각각 38.7 kVp to p 그리고 3.5 분 이었다. 최적의 DBD-CP 처리는 Salmonella를 3.9 ± 0.4 log CFU/큐브 저해시켰고, 닭 가슴살의 지방산패도, 색도, 그리고 조직감의 변화에 영향을 주지 않았다. DBD-CP처리는 E. coli O157:H7, Salmonella, and L. monocytogenes의 초기 접종농도가 ~4 log CFU/cube일 때와 `~5 log CFU/cube일 때 각각 by 3.2 ± 0.7, > 3.5 Est, 3.4 ± 0.1 CFU/cube, 그리고, 3.9 ± 0.3, 3.7 ± 0.3, 3.8 ± 0.3 저해 시켰다. 또한, DBD-CP 처리는 norovirus의 surrogate인 TV를 1.9 ± 0.4 PFU/cube 저해 시켰다. 본 연구를 통해 포장 후 DBD-CP 처리는 닭 가슴살의 외관 변화 없이 감염된 식중독균과 norovirus를 효과적으로 저해시켜 미생물 안전성을 증대시키는 가공 방법으로 이용될 수 있음을 알 수 있었다.
본 연구는 대기압 유전체장벽방전 플라즈마 처리에 따른 식품유해 미생물 사멸효과를 조사하기 위해 수행되었다. 플라즈마 처리 시, 활성종 생성 및 농도에 영향을 미치는 노출시간, 노출거리, 산소비율, 전력 변화에 따른 E. coli의 사멸효과를 조사한 결과, E. coli의 사멸율은 플라즈마 처리를 위한 노출시간, 산소비율, 전력의 증가에 따라 증가한 반면, 노출거리의 증가에 따라서는 사멸율이 감소하였다. 이 결과는 미생물 시료가 플라즈마에 노출되는 시간이 증가됨으로서 시료 내 NO 농도가 증가되고, E.coli의 사멸율 역시 증가되는 결과로 뒷받침할 수 있고, 미 생물 사멸효과를 높이기 위해서는 활성종의 농도가 증가 되어야 함을 의미한다. E. coli와 함께 B. cereus, B. subtilis, B. thuringiensis, B. atrophaeus를 대상으로 대기압 유전체 장벽방전 플라즈마에 의한 살균효과를 조사한 결과, 72.3~91.3%의 높은 사멸율을 나타내었다. 이러한 결과로 미루어, 대기압 유전체장벽방전 플라즈마기술은 다양한 미생물에 적용될 수 있는 유용한 살균기술임을 확인하였다.
푸마르산 전해수용액(0.5%, w/w, fumaric acid/slightly acidic electro-analysised water, FS), 활성칼슘 수용액(0.2%, w/w, CaO/distilled water, CaO), 그리고 유전체 방벽 방전 콜드 플라즈마(dielectric barrier discharge atmospheric cold plasma, DACP)를 이용하여 감귤에 접종된 Penicillium digitatum에 대한 저해 효과 및 외관 변화를 연구하였다. 처리 방법은 FS, CaO, CaO와 FS의 병합 처리(FSC), DACP, FS와 DACP, CaO와 DACP, 그리고 FSC와 DACP였다. DACP 처리 전압(34.0, 35.2, 그리고 37.1 kV)과 처리 시간(1, 2, 3, 4, 그리고 5분)을 변수로 하여 처리 조건 최적화를 수행하였다. 병합 처리시 DACP의 조건은 처리 전압 37.1 kV, 그리고 처리 시간 4분이었다. P. digitatum 저해 효과는 곰팡이 발생률(disease incidence, D.I., %)로 확인하였다. 처리 전압 37.1 kV, 처리 시간 4분의 DACP 처리가 사용된 FSC 처리에서 P. digitatum 저해 효과가 가장 높았다(D.I. 51.0%). DACP 처리된 감귤의 D.I.는 DACP 처리 전압이 높아질수록 유의적으로 감소하였다(p<0.05). 처리 전압이 35.2 kV이하인 DACP 처리는 처리 후 귤의 외관에 영향을 주지 않았다. 연구를 통해 천연 세척 소재-콜드 플라즈마 병합 처리가 감귤의 저장성을 높이는 새로운 살균 공정으로 사용될 가능성을 확인할 수 있었다.
In order to reuse the photocatalyst and enhance the photolysis efficiency, we have used atmospheric pressure dielectric barrier discharge (APDBD) to clean and activate TiO2 powder. The photocatalytic activity of the TiO2 powder before and after APDBD treatment was evaluated by the degradation of methylene blue (MB) in aqueous solution. The apparent reaction rate constant of photolysis of the first sample of reused TiO2 cleaned by APDBD improved to a level up to 0.32h- 1 higher than the 30 % value of the initial TiO2 powder. As the number of photolysis reactions and APDBD cleanings increased, the apparent rate constants gradually decreased; however, the fourth photolysis reaction still showed a value that was greater than 10% of the initial value. In addition, APDBD treatment enhanced the process by which TiO2 effectively adsorbed MB at every photolysis stage.
This work investigated the decomposition of aqueous anatoxin-a originated from cyanobacteria using an underwater dielectric barrier discharge plasma system based on a porous ceramic tube and an alternating current (AC) high voltage. Plasmatic gas generated inside the porous ceramic tube was uniformly dispersed in the form of numerous bubbles into the aqueous solution through the micro-pores of the ceramic tube, which allowed an effective contact between the plasmatic gas and the aqueous anatoxin-a solution. Effect of applied voltage, treatment time and the coexistence of nutrients such as NO3 -, H2PO4 - and glucose on the decomposition of anatoxin-a was examined. Chemical analyses of the plasma-treated anatoxin-a solution using liquid chromatography-mass spectrometry (LC-MS) and ion chromatography (IC) were performed to elucidate the mineralization mechanisms. Increasing the voltage improved the anatoxin-a decomposition efficiency due to the increased discharge power, but the energy required to remove a given amount of anatoxin-a was similar, regardless of the voltage. At an applied voltage of 17.2 kV (oxygen flow rate: 1.0 L min-1), anatoxin-a at an initial concentration of 1 mg L-1 (volume: 0.5 L) was successfully treated within 3 min. The chemical analyses using LC-MS and IC suggested that the intermediates with molecular weights of 123~161 produced by the attack of plasma-induced reactive species on anatoxin-a molecule were further oxidized to stable compounds such as acetic acid, formic acid and oxalic acid.
최근에 반도체의 식각 및 증착, 금속 및 고분자의 표면처리, 신물질의 합성 등에서 저온플라즈마(low-temperature plasma)가 이용되고 있으며, 공정의 미세화 및 저온화 때문에 응용분야가 점점 더 확대되고 있다. 본 연구는 전분의 인산화 반응에 있어 유전체 장벽 방전(dielectric barrier discharge, DBD) 저온플라즈마를 친환경 반응촉매로서의 적용 가능성을 탐색하는 것이다. 전분의 인산화를 위한 반응혼합물을 제조하기 위해, NaH2PO4와 Na2HPO4를 탈이온수에 용 해시켜 pH를 4, 5, 6으로 조정한 후 일반옥수수전분을 가하여 상온에서 20분 동안 교반하여 50℃에서 수분함량이 10% 미만이 될 때까지 건조하고 분쇄·선별하였다. 제조된 반응혼합물은 DBD 저온플라즈마 장치에 수용하여 밀폐하 고 아르곤(Ar) 가스를 공급하면서 결정된 전압에서 유전체 장벽을 방전시켜 형성된 저온플라즈마 하에서 일정시간 동 안 처리하였다. 전분의 인산화에 대한 DBD 저온플라즈마의 처리조건의 영향을 조사하기 위해 반응혼합물의 pH (4, 5 및 6), 전압(100, 120 및 140 V), 처리시간(10, 20 및 30 min)을 요인으로 하여 Box-Benhken 실험디자인으로부터 17 개의 실험점들을 설계하였다. 실험조건에 따라 처리된 반응혼합물들은 50% 에탄올 수용액으로 세척한 후 신속점도분 석기를 이용하여 페이스팅 점도를 조사하였다. 처리되지 않은 반응혼합물의 페이스팅 점도에 대한 처리된 반응혼합물 의 페이스팅 점도의 변화량을 반응표면분석법을 이용하여 분석하였다. DBD 저온플라즈마 처리는 반응혼합물의 페이 스팅 점도를 무처리 반응혼합물의 페이스팅 점도에 비해 증가시키거나 낮추는 효과를 나타내었다. 따라서 저온플라즈 마 처리를 통해 전분과 인산염 사이의 인산화 반응을 달성할 수 있는 것으로 생각된다.
This paper presents the approach of design parameters optimization based on Taguchi method for the uniformity of outlet pressure in a plasma discharge chamber. The key issue of a plasma discharge chamber is to have the uniformity of outlet pressure which can make a high performance of surface treatment. To extend the length of a outlet from 60mm to 250mm with the uniformity, This study optimally designed the middle holes, outlet width and height, and diameter of the second chamber by using SolidWorks and flow simulation tool. Simulation results demonstrate the validity of the proposed approach.
Plasma properties of dielectric barrier discharges (DBDs) at atmospheric pressure were measured and characterized using optical emission spectroscopy. Optical emissions were measured from argon, nitrogen, or air discharges generated at 5- 9 kV using 20 kHz power supply. Emissions from nitrogen molecules were markedly measured, irrespective of discharge gases. The intensity of emission peaks was increased with applied voltage and electrode gap. The short wavelength peaks (315.9 nm and 337.1 nm) measured at the middle of DBDs were significantly increased with applied voltage. The optical emission from DBDs decreased with the addition of oxygen gas, which was especially significant in argon discharge. Emission from oxygen molecules cannot be measured from air discharge and argon discharge with 4.8% oxygen. The emission intensity at 337.1 nm and 357.7 nm related with nitrogen molecule was sensitively changed with electrode types and discharge voltages. However, the pattern of argon emission spectrum was nearly the same, irrespective of electrode type, oxygen content, and discharge voltage.
식품의 열에 의한 손상을 줄이고 안전성을 높이기 위한 비열살균기술로 유전체장벽방전 플라즈마(DBDP) 이용 가능성을 타진하기 위하여 E. coli에 대한 살균효과를 전류세기와 전극간격을 달리하여 조사하였다. DBDP 살균효과는 초기에는 크게 나타나다가 이후 감소하는 2 구간으로 구성된 1차 반응으로 나타났고, 전류세기에 따라 살균효과가 증가하였다. 전극간격에 따른 살균력은 2.65 mm에서 가장 높았으며, 3.33 mm, 1.85 mm 순으로 감소하였다. DBDP 살균패턴은 Singh-Heldman 모델에 적합하였으며, 시료를 고정하고 DBDP를 처리한 경우 곡선형상계수(n)는 0.545-0.783 범위의 값을, D'-value는 0.565-3.268min의 값을 보였다. 최소 D'-value는 전극간격 2.65mm, 전류 1.25 A에서 나타나 가장 우수한 살균력을 보이는 조건으로 확인되었다. DBDP 처리 시 시료를 이동시키면 고정하여 처리한 경우에 비하여 살균효과는 크게 향상되었으며, 양방향 이동식 처리가 단일방향 이동식 처리에 비하여 양호한 살균력을 보였다.
비열살균기술로서 저온플라즈마 활용 가능성을 탐색하고자 유전체장벽 방전 플라즈마(DBDP)생성장치를 제작하여 최적 플라즈마생성 조건을 도출하고 Staphylococcus aureus를 대상으로 살균성능을 조사하였다. DBDP생성장치는 전력공급장치, 변압기, 전극, 시료처리부 등 네 부분으로 구성하였다. 인가전압은 단상 200 V AC를 사용하고, 변압기를 통하여 10.0-50.0 kV로 변환하고 10.0-50.0 kHz의 주파수의 펄스 구형파를 유전체인 세라믹 블록 내에 장치한 전극에 투입함으로써 상압에서 플라즈마를 생성하였다. 주파수를 올림에 따라 높은 전류가 유입되었고, 이에 비례하여 전력소비량이 증가하였다. 전류세기 1.0-2.0 A, 주파수 32.0-35.3 kHz 범위에서 균일하고 안정적인 플라즈마 발생이 이루어졌으며 시료를 투입하지 않은 상태에서의 최적 전극간격은 1.85 mm 이었다. 전극간격을 높임에 따라 소비 전력이 증가하였으나 시료 처리에 적합한 전극간격은 2.65 mm였다. DBDP 처리에 의한 온도상승은 최대 20oC에 불과하여 열에 의한 생물학적 효과는 무시할 수 있었으며 따라서 비열기술임이 확인되었다. Staphylococcus aureus를 대상으로 DBDP 처리할 경우 초기 5분 동안은 살균치가 직선적인 증가를 보이다가 이후 다소 완만해지는 경향을 보였으며 1.25 A에서 10분간 처리 시 살균치는 5.0을 상회하였다.
A ventilation system comprising a dielectric barrier discharger and UV‐TiO2 photocatalyst filters was designed and tested for simultaneous removal of gaseous and particulate contaminants in a test chamber. The DBD was used as the 1st stage of ESP for particle charging and gas decomposition. Charged particles were collected in the 2nd stage of ESP by an applied DC electric field. The UV‐TiO2 photocatalyst filters were used for decomposing gaseous species including O3 which was inherently produced by the DBD. Particle removal efficiencies based on mass and number were approximately 83.0% and 88.8%, respectively, after the ventilation system was operating for 5 hours. HCHO removal efficiency was approximately 100% for 1∼5ppm of upstream concentration condition. TVOC removal efficiency was 99.0% and 99.6% for 1 ppm and 5 ppm of upstream concentration conditions, respectively.