The emergence of micropollutants in natural water sources due to the overuse of anthropogenic chemicals in industry and households has threatened the production of clean and safe tap water in drinking water treatment plants. Conventional physicochemical processes such as coagulation/flocculation followed by sand filtration are not effective for the control of micropollutants, whereas chemical oxidation processes (applying chlorine, permanganate, ozone, etc.) are known to be promising alternatives. Determining the optimum oxidant dose is important issue related to the production of disinfection by-products as well as unnecessary operating cost, and is made possible by simulations of target-micropollutant abatement based on kinetic model equation consisting of second-order rate constant (between the oxidant and the target) and oxidant exposure. However, the difficulty in determining oxidant exposure as a function of complex water quality parameters limits the field application of kinetic model equation. With respect to representative oxidants used in drinking water treatment plants, this article reviews two main approaches for determining oxidant exposure: i) direct measurement in situ and ii) prediction by empirical models based on key water quality parameters. In addition, we discussed research requirements to improve the predictive accuracy of the empirical models for oxidant exposure and to develop a rational algorithm to determine optimal oxidant dose by considering the priority of the target pollutants to be treated.
국내 Y정수처리시설에 20-40 m3/m2/h의 표면부하율을 갖는 고속 용존공기부상공정을 도입하였다. 우선, 용존공기부상공정과 입상활성탄 공정이 결합된 반응기를 일처리용량 500 m3/day의 조건으로 운전하였다. 운전결과는 두 공정이 원수내 탁도, 조류, 지오스민, 2-MIB를 감소시킬 수 있음을 증명하였다. 도출된 최적 설계요소를 활용하여 현장규모의 공정(5,000 m3/day)에 용존공기부상공정을 도입하였다. 여름철 56일간 조류와 탁도 제거율을 평가하였다. 처리수 내 조류의 개체수는 20-30 cells/mL 이하로 유지되었으며, 조류 제거효율은 80-89%를 기록하였다. 침전법 및 용존공기부상공정 처리수질의 탁도 제거효율을 비교한 결과 평균 탁도 제거효율은 77%를 나타냈다. 이러한 결과들은 고속 용존공기부상공정이 여름철 음용수의 탁도 및 조류와 같은 저밀도 고형물을 제거하는데 유의미한 방법임을 나타냈으며, GAC는 맛・냄새를 유발하는 화합물(지오스민, 2-MIB)를 제거할 수 있는 공정 옵션인 것을 확인하였다.
Water treatment process simulator is the tool for predicting sequential changes of water quality in a train of unit processes. This predicts the changes through governing equations that represent physicochemical performance of each unit processes with an initial and boundary conditions. Since there is no operational data for the design of a water treatment facility, there is no choice but to predict the performance of the facility by assuming initial and boundary conditions in virtual reality. Therefore, a simulator that can be applied in the design stage of a water treatment facility has no choice but to be built as a numerical analysis model of a deductive technique. In this study, we had conducted basic research on governing equations, inter-process data-flow, and simulator algorithms for the development of simulators. Lastly, this study will contribute to design engineering tool development research in the future by establishing the water treatment theory so that it can be programmed in a virtual world and suggesting a method for digital transformation of the water treatment process.
Recently, various researches have been studied, such as water treatment, water reuse, and seawater desalination using CDI (Capacitive deionization) technology. Also, applications like MCDI (Membrane capacitive deionization), FCDI (Flow-capacitive deionization), and hybrid CDI have been actively studied. This study tried to investigate various factors by an experiment on the TDS (Total dissolved solids) removal characteristics using MCDI module in aqueous solution. As a result of the TDS concentration of feed water from 500 to 2,000 mg/L, the MCDI cell broke through faster when the higher TDS concentration. In the case of TDS concentration according to the various flow rate, 100 mL/min was stable. In addition, there was no significant difference in the desorption efficiency according to the TDS concentration and method of backwash water used for desorption. As a result of using concentrated water for desorption, stable adsorption efficiency was shown. In the case of the MCDI module, the ions of the bulk solution which is escaped from the MCDI cell to the spacer during the desorption process are more important than the concentration of ions during desorption. Therefore, the MCDI process can get a larger amount of treated water than the CDI process. Also, prepare a plan that can be operated insensitive to the TDS concentration of backwash water for desorption.
A 1,000 m3/d DAF(dissolved air flotation) pilot plant was installed to evaluate the performance of the floating process using the Nakdong River. Efficiency of various DAF operations under different conditions, such as hydraulic loading rate, coagulant concentration was evaluated in the current research. The operation conditions were evaluated, based on the removal or turbidity, TOC(total organic carbon), THMFP(trihalomethane formation potential), Mn(manganese), and Al(aluminum). Also, particle size analysis of treated water by DAF was performed to examine the characteristics of particles existing in the treated water. The turbidity removal was higher than 90%, and it could be operated at 0.5 NTU or less, which is suitable for the drinking water quality standard. Turbidity, TOC, and THMFP resulted in stable water quality when replacing the coagulant from alum to PAC(poly aluminum chloride). A 100% removal of Chl-a was recorded during the summer period of the DAF operations. Mn removal was not as effective as where the removal did not satisfy the water quality standards for the majority of the operation period. Hydraulic loading of 10 m/h, and coagulant concentrations of 40 mg/L was determined to be the optimal operating conditions for turbidity and TOC removal. When the coagulant concentration increases, the Al concentration of the DAF treated water also increases, so coagulant injection control is required according to the raw water quality. Particle size distribution results indicated that particles larger than 25 μm showed higher removal rates than smaller particles. The total particel count in the treated water was 2,214.7 counts/ml under the operation conditions of 10 m/h of hydraulic loading rate and coagulant concentrations of 60 mg/L.
Microplastics have become a rising issue in due to its detection in oceans, rivers, and tap water. Although a large number of studies have been conducted on the detection and quantification in various water bodies, the number of research conducted on the removal and treatment of microplastics are still comparatively low. In the current research, the inflow and removal of microplastics were investigated for various drinking water treatment plants around the world. Addition to the investigation of filed research, a survey was also conducted on the current research trend on microplastic removal for different treatment processes in the drinking water treatment plants. This includes the researches conducted on coagulation/flocculation, sedimentation, dissolved air flotation, sand filtration and disinfection processes. The survey indicated mechanisms of microplastic removal in each process followed by the removal characteristics under various conditions. Limitations of current researches were also mentioned, regarding the gap between the laboratory experimental conditions and field conditions of drinking water treatment plants. We hope that the current review will aid in the understanding of current research needs in the field of microplastic removal in drinking water treatment.
Adsorption by granule activated carbon(GAC) is recognized as an efficient method for the removal of perfluorinated compounds(PFCs) in water, while the poor regeneration and exchange cycles of granule active carbon make it difficult to sustain adsorption capacity for PFCs. In this study, the behavior of PFCs in the effluent of wastewater treatment plant (S), the raw water and the effluents of drinking water treatment plants (M1 and M2) located in Nakdong river waegwan watershed was monitored. Optimal regeneration and exchange cycles was also investigated in drinking water treatment plants and lab-scale adsorption tower for stable PFCs removal. The mean effluent concentration of PFCs was 0.044 0.04 PFHxS g/L, 0.000 0.00 PFOS g/L, 0.037 0.011 PFOA g/L, for S wastewater treatment plant, 0.023 0.073 PFHxS g/L, 0.000 0.00 PFOS g/L, 0.013 0.008 PFOA g/L for M1 drinking water treatment plant and 0.023 0.073 PFHxS g/L, 0.000 0.01 PFOS g/L, 0.011 0.009 PFOA g/L for M2 drinking water treatment plant. The adsorption breakthrough behaviors of PFCs in GAC of drinking water treatment plant and lab-scale adsorption tower indicated that reactivating carbon 3 times per year suggested to achieve and maintain good removal of PFASs. Considering the results of mass balance, the adsorption amount of PFCs was improved by using GAC with high-specific surface area (2,500m2/g), so that the regeneration cycle might be increased from 4 months to 10 months even if powdered activated carbon(PAC) could be alternatives. This study provides useful insights into the removal of PFCs in drinking water treatment plant.
In this study, effects of five raw water quality parameters (turbidity, odor compounds caused by algae, filter clogging caused by algae, pH increase caused by algae, and organic matter) on improvements and operations costs of typical water treatment plant (WTP) were estimated. The raw water quality parameters were assumed the worst possible conditions based on the past data and costs were subsequently estimated. Results showed that new water treatment facilities were needed, such as a selective intake system, an advanced water treatment processes, a dual media filter, a carbonation facility, and a re-chlorination facility depending on water quality. Furthermore, changes needed to be made in WTP operations, such as adding powered activated carbon, increasing the injection of chlorine, adding coagulation aid, increasing the discharge of backwashed water, and increasing the operation time of dewatering facilities. Such findings showed that to reliably produce high-quality tap water and reduce water treatment costs, continuous improvements to the quality of water sources are needed.
As water resources are limited and legal regulations are strengthened, there is a growing need to reuse residuals in WTP(Water Treatment Plant). In this study, membrane filtration system was constructed and its operation method was studied for water quality stabilization and reuse of WTP residuals. The operation parameters were stable for 1 year and 6 months. Membrane fouling was identified as particulate pollution (activated carbon) and inorganic pollution (manganese). The membrane system was operated steadily with raw water of high concentration SS(Suspended solid) containing activated carbon because membrane fouling was reduced by the effect of End-Free type. In the case of inorganic contamination, dissolved manganese eluted by chemicals and acted as a membrane fouling source, and the operating conditions for minimizing membrane fouling were confirmed by newly developing application methods and types of cleaning chemicals. Based on the results, design parameters for reducing manganese membrane fouling were derived.
This study is focused on effects of factors that affect the formation of THMs during chlorination in drinking water treatment. During the chlorination, chlorine consumption is increased by increasing the initial chlorine dose, the pH and the total dissolved solid (TDS) concentration. Also THMs formation is increased up to 58.82 μg/L and 55.54 μg/L by increasing initial chlorine concentration and increasing pH. However, concentration of chloroform is decreased by increasing TDS concentration. This is caused the cation(Na+) of the total dissolved solids preferentially reacts with the functional groups of the organic material which influence the trihalomethane formation. But total trihalomethane formation is increased up to 127.46 μg/L by Br- contained in the total dissolved solids. DOC reduction was not influenced by any of the factors.
분리막 공정의 효율적인 운전을 위해서는 막오염 원인물질의 파악과 전처리 단계에서의 제어가 필요하며, 막해체를 통한 막오염 물질의 특성 분석은 막오염 원인물질에 대한 정보를 제공한다. 본 연구에서는 1.7 m3/day 규모의 파일럿 나노여과막을 약 60일 동안 운전 후 해체하여 막오염 특성을 평가하였다. 막오염 물질의 대부분(69.7±1.5wt.%)은 미생물에서 유래한 저분자(< 0.5 K Da) 유기물질로 밝혀졌다. 무기 막오염 물질은 알루미늄이 대부분(60% 이상)을 차지하였으며, 이는 정수처리 공정에서 응집제로 사용되는 잔류 폴리염화알루미늄의 영향으로 판단된다. 그러므로 나노여과막 장기운전을 위해서는, 미생물에 의한 막오염 저감 방안과 잔류 응집제를 제거하기 위한 전처리 방안이 마련돼야 한다.
본 총설은 다양한 저널 게재 논문으로부터 분리막 및 광촉매의 혼성 정수/하수 처리 공정을 요약하였다. 이 총설에는 (1) 분리막 광촉매 반응기(membrane photoreactor, MPR), (2) 분리막 결합 광촉매 공정에서 막오염 관리, (3) 유기 오염 물의 분해를 위한 광촉매 분리막 반응기, (4) 정수처리용 막분리 공정과 광촉매 분해의 결합, (5) 휴믹산 분해를 위한 광촉매 및 세라믹 막여과의 혼성공정, (6) 활성슬러지 여과를 위한 한외여과의 막오염에 이산화티타늄 나노입자의 영향, (7) 정수처 리용 광촉매 및 정밀여과의 혼성시스템, (8) 선박 평형수 처리용 한외여과 및 광촉매의 혼성공정 및 (9) 분리막 및 광촉매 코팅 프로필렌 구의 혼성수처리 공정이 포함되어 있다.
In this study, the effects of operating conditions on the formation of reversible and irreversible fouling were investigated in the filtration using ceramic membrane for water treatment process. The effect of coagulation pretreatment on fouling formation was also evaluated by comparing the performance of membrane filtration both with and without addition of coagulant. A resistance-in-series-model was applied for the analysis of membrane fouling. Total resistance (RT) and internal fouling resistance (Rf) increased in the membrane filtration process without coagulation as membrane flux and feed water concentrations increased. Internal fouling resistance, which was not recovered by physical cleaning, was more than 70% of the total resistance at the range of the membrane flux more than 5 m3/m2・day. In the combined process with coagulation, the cake layer resistance (Rc) increased to about 30-80% of total resistance. As the cake layer formed by coagulation floc was easily removed by physical cleaning, the recovery rate by physical cleaning was 54~90%. It was confirmed from the results that the combined process was more efficient to recover the filtration performance by physical cleaning due to higher formation ratio of reversible fouling, resulted in the mitigation of the frequency of chemical cleaning.
In water treatment process using microfiltration membranes, manganese is a substance that causes inorganic membrane fouling. As a result of analysis on the operation data taken from I WTP(Water Treatment Plant), it was confirmed that the increase of TMP was very severe during the period of manganese inflow. The membrane fouling fastened the increase of TMP and shortened the service time of filtration or the cleaning cycle. The TMP of the membrane increased to the maximum of 2.13 kgf/cm2, but it was recovered to the initial level (0.17 kgf/cm2) by the 1st acid cleaning step. It was obvious that the main membrane fouling contaminants are due to inorganic substances. As a result of the analysis on the chemical waste, the concentrations of aluminum(146-164 mg/L) and manganese(110-126 mg/L) were very high. It is considered that aluminum was due to the residual unreacted during coagulation step as a pretreatment process. And manganese is thought to be due to the adsorption on the membrane surface as an adsorbate in feed water component during filtration step. For the efficient maintenance of the membrane filtration facilities, optimization of chemical concentration and CIP conditions is very important when finding the abnormal level of influent including foulants such as manganese.
Water and wastewater treatment has always been a challenging task due to the continuous increase in amount and the change in characteristics of the poorly biodegradable and highly colored organic matters, as well as harmful micro-organisms. Advanced techniques are therefore required to successfully remove these pollutants from water before reuse or discharge to receiving water bodies. Application of ozone, which is a powerful oxidant and disinfectant, alone or as part of advanced oxidation process depends on the complex kinetic reactions and the mass transfer of ozone involved. Micro- and nano bubbling considerably improves gas dissolution compared to conventional bubbles and hence mass transfer. It can also intensify generation of hydroxyl radical due to collapse of the bubbles, which in turn facilitates oxidation reaction under both alkaline as well as acidic conditions. This review gives the overview of application of micro- and nano bubble ozonation for purification of water and wastewater. The drawbacks of previously considered techniques and the application of the hydrodynamic ozonation to synthetic aqueous solutions and various industrial wastewaters are systematically reviewed.
In this study, a model was developed to predict for Disinfection By-Products (DBPs) generated in water supply networks and consumer premises, before and after the introduction of advanced water purification facilities. Based on two-way ANOVA, which was carried out to statistically verify the water quality difference in the water supply network according to introduce the advanced water treatment process. The water quality before and after advanced water purification was shown to have a statistically significant difference. A multiple regression model was developed to predict the concentration of DBPs in consumer premises before and after the introduction of advanced water purification facilities. The prediction model developed for the concentration of DBPs accurately simulated the actual measurements, as its coefficients of correlation with the actual measurements were all 0.88 or higher. In addition, the prediction for the period not used in the model development to verify the developed model also showed coefficients of correlation with the actual measurements of 0.96 or higher. As the prediction model developed in this study has an advantage in that the variables that compose the model are relatively simple when compared with those of models developed in previous studies, it is considered highly usable for further study and field application. The methodology proposed in this study and the study findings can be used to meet the level of consumer requirement related to DBPs and to analyze and set the service level when establishing a master plan for development of water supply, and a water supply facility asset management plan.