Among the Additive Manufacturing (AM) technologies, the Binder-Jetting printing technology is a method of spraying an adhesive on the surface of powder and laminate layer by layer. Recently, this technique has become a major issue in the production of large casting products such as ship-building, custom vehicles and so on. In this study, we performed research to make actual mold castings and increase mechanical property by using special sand and water-based binders. For use as a mold, it has a strength of more than 3MPa and permeability. Various experiments were carried out to obtain suitable them. The major process parameters were binder jetting volume, binder types, layer thickness and heat treatment condition. As a result of this study, the binder drop quantity was measured to be about 60 pico-liter, layer thickness was 100μm and the heat treatment condition was measured about 1,000℃ and compressive strength were measured to be more than 5MPa. The optimum condition of this experiment was established through actual casting of aluminum. The equipment used in this study was a Freeforms T400 model (SFS Co., Ltd.), and the printing area of 420 * 300 * 250mm and resolution of 600dpi can be realized.
In order to broaden the range of application of light weight aluminum alloys, it is necessary to enhance the mechanical properties of the alloys and combine them with other materials, such as cast iron. In this study, the effects of adding small amounts of Cu and Zr to the Al-Si-Mg based alloy on tensile properties and corrosion characteristics were investigated, and the effect of the addition on the interfacial compounds layer with the cast iron was also analyzed. Although the tensile strength of the Al-Si-Mg alloy was not significantly affected by the additions of Cu and Zr, the corrosion resistance in 3.5 %NaCl solution was found to be somewhat lowered in this research. The influence of Cu and Zr addition on the type and thickness of the interfacial compounds layer formed during compound casting with cast iron was not significant, and the main interfacial compounds were identified to be Al5FeSi and Al8Fe2Si phases, as in the case of the Al-Si-Mg alloys.
In the case of a die-casting process, defects that are difficult to confirm by visual inspection, such as shrinkage bubbles, may occur due to an error in maintaining a vacuum state. Since these casting defects are discovered during post-processing operations such as heat treatment or finishing work, they cannot be taken in advance at the casting time, which can cause a large number of defects. In this study, we propose an approach that can predict the occurrence of casting defects by defect type using machine learning technology based on casting parameter data collected from equipment in the die casting process in real time. Die-casting parameter data can basically be collected through the casting equipment controller. In order to perform classification analysis for predicting defects by defect type, labeling of casting parameters must be performed. In this study, first, the defective data set is separated by performing the primary clustering based on the total defect rate obtained during the post-processing. Second, the secondary cluster analysis is performed using the defect rate by type for the separated defect data set, and the labeling task is performed by defect type using the cluster analysis result. Finally, a classification learning model is created by collecting the entire labeled data set, and a real-time monitoring system for defect prediction using LabView and Python was implemented. When a defect is predicted, notification is performed so that the operator can cope with it, such as displaying on the monitoring screen and alarm notification.
The synthesis of porous W by freeze-casting and vacuum drying is investigated. Ball-milled WO3 powders and tert-butyl alcohol were used as the starting materials. The tert-butyl alcohol slurry is frozen at –25oC and dried under vacuum at –25 and –10oC. The dried bodies are hydrogen-reduced at 800oC and sintered at 1000oC. The XRD analysis shows that WO3 is completely reduced to W without any reaction phases. SEM observations reveal that the struts and pores aligned in the tert-butyl alcohol growth direction, and the change in the powder content and drying temperature affects the pore structure. Furthermore, the struts of the porous body fabricated under vacuum are thinner than those fabricated under atmospheric pressure. This behavior is explained by the growth mechanism of tert-butyl alcohol and rearrangement of the powders during solidification. These results suggest that the pore structure of a porous body can be controlled by the powder content, drying temperature, and pressure.
The strengthening of environmental regulations has raised interest in alternative energy and electric car. Secondary batteries are such energy storage device, and in this study, a secondary batteries production equipment parts will be manufactured. To this end, molds were designed and manufactured using numerical analysis. The reliability of analysis is to be confirmed through tensile tests and X-ray tests of products cast with manufactured molds. As the results of the casting method design parts was obtained as the average ultimate tensile strength of 178.23N/mm2, 173.85N/mm2 was recorded and good test results were achieved. It is considered that aluminum alloy research and heat treatment technology development should be carried out in the future.
The effect of solidification rate on micro-segregation in investment casting of IN738LC superalloy was studied. In Ni-based superalloys, the micro-segregation of solute atoms is formed due to limited diffusion during cast and solidification. The microstructure of cast Ni-based superalloys is largely divided into dendrite core of initial solidification and interdendrite of final solidification. In particular, mosaic shaped eutectic γ/γ’ and carbides are formed in the interdendrite of the final solidification region in some cases. The micro-segregation phenomena formed in regions of dendrite core and interdendrite including eutectic γ/γ’ and carbides were analyzed using OM, SEM/EDS and micro Vickers hardness. As a result of analysis, the lack of (Cr, W) and the accumulation of Ti were measured in the eutectic γ/γ’, and the accumulation of (Cr, Mo) and the lack of Ti were measured in the interdendrite between dendrite and eutectic. Carbides formed in interdendritic region were composed of (Ti, W, Mo, C). The segregation applied to each microstructure is mainly due to the formation of γ’ with Ni3(Al,Ti) composition. The Ni accumulation accompanied by Cr depletion, and the Ti accumulated in the eutectic region as a γ’ forming elements. The Mo tends to diffuse out from the dendrite core to the interdendrite, and the W diffuse out from the interdendrite to the dendrite core. Therefore, the accumulation of Mo in the interdendrite and the deficiency of W occur in the eutectic region located in the interdendrite. Heat treatment makes the degree of the micro-segregation decrease due to the diffusion during solid solution. This study could be applied to the heat treatment technology for the micro-segregation control in cast Ni-based superalloys.
Cr-Si based alloys are not only excellent in corrosion resistance at high temperatures, but also have good wear resistance due to the formation of Cr3Si phase, therefore they are promising as metallic coating materials. Aluminum is often added to Cr-Si alloys to improve the oxidation resistance through which stable alumina surface film is formed. On the other hand, due to the addition of aluminum, various Al-containing phases may be formed and may negatively affect the heat resistance of the Cr-Si-Al alloys, so detailed investigation is required. In this study, two Cr-Si-Al alloys (high-Si & high-Al) were prepared in the form of cast ingots through a vacuum arc melting process and the microstructural changes after high temperature heating process were investigated. In the case of the cast high-Si alloy, a considerable amount of Cr3Si phase was formed, and its hardness was significantly higher than that of the cast high-Al alloy. Also, Al-rich phases (with the high Al/ Cr ratio) were not found much compared to the high-Al alloy. Meanwhile, it was observed that the amount of the Al-rich phases reduced by the annealing heat treatment for both alloys. In the case of the high temperature heating at 1,400 oC, no significant microstructural change was observed in the high Si alloy, but a little more coarse and segregated AlCr phases were found in the high Al alloy compared to the cast state.
Sand casting 3D printing uses a binder jetting method to produce a mold having complicated shape by spraying a binder on sand coated with activator. Appropriate heat treatment process in sand mold fabrication can increase the degree of polymerization to improve flexural strength. However, long heat treatment of over 24 hours decreases flexural strength and reliability due to chemical bond decomposition through thermal degradation. The main role of the activator is to control the reaction rate between the polymer chains. As a result, when the activator composition is increased from 0.15 wt% to 0.25 wt%, the flexural strength is increased by 218 N/cm2. However, excess activator (0.40 wt%) has been shown to decrease reliability without increasing flexural strength. The main role of the binder is to control the flexural strength of the specimen. As the binder composition is increased from 2.00 wt% to 4.00 wt%, the flexural strength increases to about 255 N/cm2, indicating the maximum flexural strength increase. Finally, the reliability of the flexural strength of the fabricated specimens is evaluated by a Weibull plot. Weibull modulus calculations are used to evaluate the flexural strength reliability of the specimens, and maximum reliability value of 11.7 is obtained at 0.20 wt% activator composition. Therefore, it is confirmed that this composition has maximum flexural strength reliability.
In the modern industrial period, the introduction of mass production was most important progress in civilization. Die-casting process is one of main methods for mass production in the modern industry. The aluminum die-casting in the mold filling process is very complicated where flow momentum is the high velocity of the liquid metal. Actually, it is almost impossible in complex parts exactly to figure the mold filling performance out with the experimental knowledge. The aluminum die-castings are important processes in the automotive industry to produce the lightweight automobile bodies. Due to this condition, the simulation is going to be more critical role in the design procedure. Simulation can give the best solution of a casting system and also enhance the casting quality. The cost and time savings of the casting layout design are the most advantage of Computer Aided Engineering (CAE)..
Generally, the relations of casting conditions such as injection system, gate system, and cooling system should be considered when designing the casting layout. Due to the various relative matters of the above conditions, product defects such as defect extent and location are significantly difference. In this research by using the simulation software (AnyCasting), CAE simulation was conducted with three layout designs to find out the best alternative for the casting layout design of an automotive Oil Pan_BJ3E. In order to apply the simulation results into the production die-casting mold, they were analyzed and compared carefully. Internal porosities which are caused by air entrapments during the filling process were predicted and also the results of three models were compared with the modifications of the gate system and overflows. Internal porosities which are occurred during the solidification process are predicted with the solidification analysis. And also the results of the modified gate system are compared.
The annealing characteristics of a cold rolled Al-6.5Mg-1.5Zn alloy newly designed as an automobile material is investigated in detail. The aluminum alloy in the ingot state is cut to a thickness of 4 mm, a total width of 30 mm and a length of 100 mm and then reduced to a thickness of 1 mm (reduction of 75%) by multi-pass rolling at room temperature. Annealing after rolling is performed at temperatures ranging from 200 to 400 ℃ for 1 hour. The tensile strength of the annealed material tends to decrease with the annealing temperature and shows a maximum tensile strength of 482MPa in the material annealed at 200 ℃. The tensile elongation of the annealed material increases with the annealing temperature, while the tensile strength does not, and reaches a maximum value of 26 % at the 350 ℃ annealed material. For the microstructure, recovery and recrystallization actively occur as the annealing temperature increases. The recrystallization begins to occur at 300 ℃ and is completed at 350 ℃, which results in the formation of a fine grained structure. After the rolling, the rolling texture of {112}<111>(Cu-Orientation) develops, but after the annealing a specific texture does not develop.
In this study, the whole process of 6xxx series aluminum cast alloy for high speed train interior or exterior parts are characterized. For casting, selection of optimum alloying elements, dissolution technology, de-gassing process, production of molds conforming to the conditions of use, development of casting process control technology for various shapes and materials are performed for the development of high-quality, high strength aluminum alloys. The development of more reliable lightweight aluminum and aluminum alloy for interior or exterior materials has been the scope of this study. The mechanical properties, and chemical composition of the case materials were evaluated for the 6063, 6061 and 6N01 alloy profiles and compared to the commercial materials and the evaluation results satisfied the standard.
A most important progress in civilization was the introduction of mass production. One of main methods for mass production is die-casting molds. Due to the high velocity of the liquid metal, aluminum die-casting is so complex where flow momentum is critical matter in the mold filling process. Actually in complex parts, it is almost impossible to calculate the exact mold filling performance with using experimental knowledge. To manufacture the lightweight automobile bodies, aluminum die-castings play a definitive role in the automotive part industry. Due to this condition in the design procedure, the simulation is becoming more important. Simulation can make a casting system optimal and also elevate the casting quality with less experiment. The most advantage of using simulation programs is the time and cost saving of the casting layout design. For a die casting mold, generally, the casting layout design should be considered based on the relation among injection system, casting condition, gate system, and cooling system. Also, the extent or the location of product defects was differentiated according to the various relations of the above conditions. In this research, in order to optimize the casting layout design of an automotive Oil Pan_BR2E, Computer Aided Engineering (CAE) simulation was performed with three layout designs by using the simulation software (AnyCasting). The simulation results were analyzed and compared carefully in order to apply them into the production die-casting mold. During the filling process with three models, internal porosities caused by air entrapments were predicted and also compared with the modification of the gate system and overflows. With the solidification analysis, internal porosities occurring during the solidification process were predicted and also compared with the modified gate system.
뛰어난 물성을 가진 poly (vinylidene fluoride) (PVDF)는 정밀여과 (MF)와 한 외여과 (UF) 분리막의 소재로써 많이 연구되고 있다. 기공의 크기를 조절하는 것은 분리막을 제조하는데 있어 중요한 요소이다. 본 연구에서는 매우 간단한 방법으로 분리막의 기공 크기를 조절하는 새로운 방법을 제시하고자 한다. PVDF 한외여과 분리막의 기공 크기는 유리판 위에 150 ㎛의 두께로 주조된 PVDF 도프 용액이 응고조 (증류수)속으로 들어가는 속도를 통해 조절되었다. 이 때 PVDF 한외여과 분리막의 기공 크기는 응고조에 들어가는 PVDF 도프 용액의 속도가 감소될수록 증가하는 경향을 보였다.