검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 101

        1.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, we aim to improve the output quality of a food 3D printer through optimized component design and implementation. Existing 3D printers produce customized outputs according to consumer needs, but have problems with output speed and poor quality. In this paper, we aim to solve this problem through optimized design of unit parts such as the extruder, nozzle, guide, and external case. Fusion 360 was used for element design, and in the performance evaluation of the implemented system, the average precision was 0.06mm, which is higher than the non-repeatable precision of ±0.1㎜ of other products, and the feed speed of the existing system was evaluated to be more than twice as fast, from 70mm/s to 140mm/s. In the future, we plan to continuously research output elements that can produce texture and color and device control methods for convenience.
        4,000원
        2.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The laser power has been continually increased since the laser was developed in the mid-20th century. Achieving higher laser power requires not only enhancing the cooling performance of laser systems but also addressing the potential degradation of optical characteristics due to thermal deformation induced by laser beam absorption in a mirror. This study delves into the thermal deformation characteristics of mirrors in high-power laser systems. To minimize thermal deformation by heat absorption, Zerodur, known for its low coefficient of thermal expansion, was employed as the mirror material. Various configurations including circular, rectangular, and spline shapes were implemented on a solid mirror structure. Furthermore, two different diameter of a mirror, 300mm and 400mm, were considered to investigate the size effect of the high-power laser beams. Also, three different transmitted beam power were adopted: 50W, 250W, and 500W. Based on the finite element analysis for the thermal deformation, the deformation characteristics of the different types of mirror structures were investigated and analyzed for high-power laser systems.
        4,000원
        3.
        2024.04 구독 인증기관·개인회원 무료
        3D 프린팅 콘크리트는 임의의 형상을 자유롭게 적층하여 제작할 수 있다는 장점을 가지고 있지만, 노즐의 구조 및 형상에 따라 곡선부의 출력 품질이 달라진다. 또한, 공기중에서 출력한 경우와 수중에 서 출력한 경우 그 품질이 달라진다. 본 연구에서는 고정 마감날을 가진 사각형 노즐을 이용하여 3D 프린팅 모르타르를 수중에서 곡선 형태로 출력하고 적층한 후 출력성능, 적층성능, 및 역학적성능을 평가하였다. 30 × 30 mm 사각형 개구부를 가지고 있고 노즐 끝 양 측면에 고정 마감날이 설치된 노 즐을 사용하였다. 사전 직선 출력시험에서 선정된 조건인 호퍼 회전속도 14 rpm, 노즐 이동 속도 2000 mm/min을 적용하여 출력하였고, 1층 높이를 30mm로 출력하여 5층 적층하였다. 출력 및 적층 결과, 직선부분의 표면은 양호한 반면 곡면부분, 특히 곡률이 큰 곡선부분의 바깥쪽에서 표면균열이 관찰되었다. 직선부분의 치수 일관성은 양호한 반면, 곡률 반경이 작은 곡선부분의 폭 차이가 나타났 다. 곡선부분의 밀도와 압축강도는 직선부분보다 낮았다. 이는 곡선부에서 직사각형 노즐 회전에 따른 재료 토출이 불균일하기 때문인데, 이러한 문제점을 보완할 수 있는 제어 기술 개발이 필요하다.
        4.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the various process conditions for high-power DC Magnetron Sputtering (DCMS) on the surface roughness of carbon thin films were investigated. The optimal conditions for Si/C coating were 40min for deposition time, which does not deviate from normal plasma, to obtain the maximum deposition rate, and the conditions for the best surface roughness were – 16volt bias voltage and 400watt DC power with 1.3x10-3torr chamber pressure. Under these optimal conditions, an excellent carbon thin film with a surface roughness of 1.62nm and a thickness of 724nm was obtained. As a result of XPS analysis, it was confirmed that the GLC structure ( bonding) was more dominant than the DLC structure ( bonding) in the thin film structure of the carbon composite layer formed by DC sputtering. Except in infrequent cases of relatively plasma instability, the lower bias voltage and applied power induces smaller surface roughness value due to the cooling effect and particle densification. For the optimal conditions for Graphite/C composite layer coating, a roughness of 36.3 nm and a thickness of 711 nm was obtained under the same conditions of the optimal process conditions for Si/C coating. This layer showed a immensely low roughness value compared to the roughness of bare graphite of 242 nm which verifies that carbon coating using DC sputtering is highly effective in modifying the surface of graphite molds for glass forming.
        4,300원
        5.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Titanium constitutes approximately 60% of the weight of steel and exhibits strength comparable to steel's but with a higher strength-to-weight ratio. Titanium alloys possess excellent corrosion resistance due to a thin oxide layer at room temperature; however, their reactivity increases above 600°C, leading to oxidation and nitridation. Welding titanium alloys presents challenges such as porosity issues. Laser welding minimizes the heat-affected zone (HAZ) by emitting high output in a localized area for a short duration. This process forms a narrow and deep HAZ, reducing the deterioration of mechanical properties and decreasing the contact area with oxygen. In this study, fiber laser welding was conducted on 8.0mm thick Ti-6Al-4V alloy using the Bead On Plate (BOP) technique. A total of 25 welding conditions were experimented with to observe bead shapes. The results demonstrated successful penetration within the 0.792mm to 8.000mm range. It was concluded that this experimental approach can predict diverse welding conditions for Ti-6Al-4V alloys of various thicknesses.
        4,000원
        6.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Research into lightweighting to improve vehicle fuel efficiency and reduce exhaust emissions continues as environmental regulations become increasingly stringent. Magnesium alloys, chosen for their lightweight properties, are more than 35% lighter than aluminum alloys and also exhibit excellent mechanical characteristics. While magnesium alloys are commonly utilized in arc welding processes like GTAW and GMAW, they pose challenges such as high residual stresses and welding defects. Laser welding, on the other hand, offers the advantage of precise heat input, enabling deep and high-quality welds while minimizing welding distortion. In this study, fiber laser welding was employed to weld a 4.0mm thick AZ31B-H24 using the Bead on Plate technique. A total of 10 different welding conditions were tested with fiber laser welding, and the cross-sections of the weld beads were examined. Weld bead shapes were measured based on five parameters. The results allowed for an evaluation of the weldability of AZ31B-H24 using fiber laser welding.
        4,000원
        7.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        BaTiO3-Poly vinylidene fluoride (PVDF) solution was prepared by adding 0~25 wt% BaTiO3 nanopowder and 10 wt% PVDF powder in solvent. BaTiO3-PVDF film was fabricated by spreading the solution on a glass with a doctor blade. The output performance increased with increasing BaTiO3 concentration. When the BaTiO3 concentration was 20 wt%, the output voltage and current were 4.98 V and 1.03 μA at an applied force of 100 N. However, they decreased when the over 20 wt% BaTiO3 powder was added, due to the aggregation of particles. To enhance the output performance, the generator was poled with an electric field of 150~250 kV/cm at 100 °C for 12 h. The output performance increased with increasing electric field. The output voltage and current were 7.87 V and 2.5 μA when poled with a 200 kV/cm electric field. This result seems likely to be caused by the c-axis alignment of the BaTiO3 after poling treatment. XRD patterns of the poled BaTiO3-PVDF films showed that the intensity of the (002) peak increased under high electric field. However, when the generator was poled with 250 kV/cm, the output performance of the generator degraded due to breakdown of the BaTiO3-PVDF film. When the generator was matched with 800 Ω resistance, the power density of the generator reached 1.74 mW/m2. The generator was able to charge a 10 μF capacitor up to 1.11 V and turn on 10 red LEDs.
        4,000원
        8.
        2023.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the actual sea, the additional resistance due to external force such as wind, current and wave is accompanied, and the required power is added in response to these resistance. Especially when the ship is sailing at low speed, the effects of wind and current have a great impact on the safe control of the ship. Likewise, it is thought that the effects of wind and current have a great impact on the trawl ship control since the towing speed of a bottom trawl ship is a low speed of 3 to 4 knots. If the reduce of ship speed and the increase of engine power due to the influence of wind and current can be identified, the safe towing power can be calculated based on a given engine output. Thus, the appropriate size of a fishing gear can be determined. In this study, a total of 20 trawl operations were conducted for seasonal maritime research in the same research area according to the operation mode of propeller. Based on navigation data, trawl fishing data, and engine performance data acquired during the towing fishing gear, and data of ship speed, hull resistance, fishing gear resistance, wind force and current force according to an incidence angle were estimated. The overall power for these loads was calculated and compared with the measured engine power, and the effects of wind force and current force on the engine power were investigated.
        4,000원
        9.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The noise of large and high-power machines was evaluated and the establishment of mitigation measures was studied. The noise level of large machinery and high-power machinery installed at domestic plant sites was investigated and compared with the noise disclosure regulations to see if they met the standards of the Occupational Safety and Health Act. This investigated the soundproofing design of large and high-power machines and the soundproofing design of complex noise of large machines installed in the plant, and prepared the design standards of the plant design company. In the future, we will compile a database of data to secure standards for research and plant design related to noise reduction, and propose noise improvement and management measures for large and high-power machines.
        4,000원
        10.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        3D printing is widely used in product development and prototype manufacturing, and is expected to become universal across various industries with the development of 3D printing-related technologies. However, parts made by Fused Deposition Modeling(FDM) 3D printing using the commonly used stacking manufacturing process, show low tensile strength and hardness. The decreased mechanical properties of these parts limit their use as structural elements. In this study, we aim to investigate the relationship between ultrasonic treatment of PLA parts produced by FDM 3D printing and their mechanical properties. Specifically, we analyze the effects of ultrasonic annealing on the mechanical properties of PLA parts using the tensile test specimen.
        4,000원
        11.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently 3d printer industry has two demands. first is color 3d printing. second is mass production using 3d printer that has large bed. According to previous studies, 3D printed objects have different weights depending on filament colors. 3D printed tensile specimens with filaments of various colors were checked to see they had the same weight. If so, we wanted to see it was statistically significant. As a result, we found that the weight of 3D printed objects was statistically significantly different depending on the filament color. The average weight of 3d printed objects is: Black(8.63g), Blue(8.58g), Yellow(8.53g), White(8.48g), Natural(8.46g), Green (8.45g), Red(8.42g).
        4,000원
        12.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study analyzes the effects of the number of angles and bends on resistance in a conductor-embroidered stitch circuit for efficient power transfer through a conductor of wearable energy harvesting to study changes in power lost through connection with actual solar panels. In this study, the angle of the conductive stitch circuit was designed in units of 30°, from 30° to 180°, and the resistance was measured using an analog Discovery 2 device. The measured resistance value was analyzed, and in the section of the angle where the resistance value rapidly changes, it was measured again and analyzed in units of 5°. Following this, from the results of the analysis, the angle at which the tension was applied to the stitch converges was analyzed, and the resistance was measured again by varying the number of bends of the stitch at the given angle. The resistance decreases as the angle of the stitch decreases and the number of bends increases, and the conductor embroidery stitch can reduce the loss of power by 1.61 times relative to general embroidery. These results suggest that the stitching of embroidery has a significant effect on the power transfer in the transmission through the conductors of wearable energy harvesting. These results indicate the need for a follow-up study to develop a conductor circuit design technology that compares and analyzes various types of stitches, such as curved stitches, and the number of conductors, so that wearable energy harvesting can be more efficiently produced and stored.
        4,000원
        14.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper proposes a solution to the out-of band oscillation signal and in-band low transmitter power output that occurrs during the low-temperature operation test for the new mine detector GPR signal transmission and reception module. Tests were performed by applying the optimal values of capacitors and inductors through circuit analysis simulation under the limited space, as a result, it was confirmed that the gain and return loss were improved at all-band thereby preventing oscillation signal and low transmitter power output.
        4,000원
        17.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper is a study to improve the energy harvesting output of a TENG(Triboelectric nanogenerator) driven by wind power using fine PTFE(Polytetrafluoroethylene) flakes. The structure of the nanogenerator was manufactured in the cylindrical structure, Al(Aluminium) was attached to the inner wall of the cylinder and the PTFE flakes were rotated by the wind inside the cylinder. The number of contact and separation motions was increased as there are multiple PTFE flakes, resulting in improvement of the harvesting output. Through this, it was evaluated to the energy harvesting output characteristics according to the change in the number of PTFE flakes. Up to the optimum, the energy collection efficiency shows the linear correlation with the increase in PTFE flakes and decreases after that. As the PTFE flakes are more than the optimum, the lowering in the harvesting output is induced by obstructing the flow of wind inside the cylinder.
        4,000원
        18.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to compare the effects of input- and output-based planning (reading a sample passage vs. writing a draft) on the oral performance of L2 learners with low-proficiency. In this study, 16 Korean female junior college students of low English proficiency were divided into two different planning groups. The reading group was required to read a sample passage of the given topic, designed to encourage “noticing” and “focus on form” using input enhancement, while the writing group was asked to write a draft of their speech, using only their own L2 knowledge. After such planning activities, both groups recorded their assigned speaking tasks using Kakao Talk. Eight planning activities and oral performances were completed over the period of the semester. In order to compare the effects of input- and output-based planning on the improvement of overall proficiency, pre- and post-tests, in which the students produced the same narratives, were analyzed using Mann-Whitney U and Wilcoxon signed-rank tests. Furthermore, this study explored any difference in speaking performance after each type of planning and what the learners were actually doing during planning time. The results showed that output-based planning had positive effects on speaking performance and its repeated practice led to the improvement of overall proficiency.
        6,100원
        19.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to stricter environmental regulations of the International Maritime Organization (IMO), the number of ships fueled by Liquefied Natural Gas (LNG) is rapidly increasing. The International Code of the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC Code) limits the material of tanks that can store cryogenic substances such as LNG. Among the materials listed in the IGC Code, ASTM A553M-17 has been recently adopted as a material for LNG fuel tank projects because of its excellent mechanical properties at cryogenic temperatures. In shipyards, this material is being used to build tanks through Flux Cored Arc Welding (FCAW). However, there is a problem that magnetization occurs during welding and there is a big difference in welding quality depending on the welding position. In order to overcome this problem, this study intends to conduct basic research to apply laser welding to ASTM A553M-17 material. In Part I, the bead shape according to the welding output was analyzed and in PART II, ​​the penetration phenomenon according to the welding speed was analyzed after Bead on Plate (BOP) test. As a result of analyzing the bead shape according to laser power performed in this study, it was confirmed that the laser power and penetration depth are proportional to some extent. In addition, a range of suitable welding power was proposed for the 6.1mm thickness material performed in this study.
        4,000원
        20.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        블레이드는 바람 에너지를 전기 에너지로 변환하기 위한 풍력발전기 시스템의 핵심 요소이다. 블레이드의 공기역학적 설계는 적절한 에어포일을 선택하고 블레이드 축을 따라 최적의 단면을 결정하는 것이다. 본 연구의 목표는 블레이드 에어포일의 모델을 개발하고, 개발한 에어포일의 효율을 분석하는 것이다(블레이드 형상은 수정된 SM 시리즈 프로파일을 기반으로 함). 일반적으로 풍력 터빈 블레이드는 Cl/Cd에 민감하다. 본 연구의 초점은 X-Foil 프로그램을 통해 강한 바람과 돌풍에서의 최고 효율(Cl/Cd)을 위한 에어포일의 좌표를 최적화시키는 것이다. 국내 해역의 난류 특성, 돌풍 및 바람 조건에 대한 적절한 에어포일을 개발하기 위해서는 수치 해석을 통해 에어포일의 길이와 이에 따른 두께비(Y/C), 에어포일의 최대 두께비에 대한 상대 위치(Xd), S형 tail edge 및 비율 등을 계산하여 결정한다. X-Foil 프로그램을 통해 모델링된 2D 모델에 대하여 CFD(Computational Fluid Dynamics) 검증을 반복 수행하여 최적화시켰다.
        4,000원
        1 2 3 4 5