검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 17

        1.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the effect of process stopping and restarting on the microstructure and local nanoindentation properties of 316L stainless steel manufactured via selective laser melting (SLM). We find that stopping the SLM process midway, exposing the substrate to air having an oxygen concentration of 22% or more for 12 h, and subsequently restarting the process, makes little difference to the density of the restarted area (~ 99.8%) as compared to the previously melted area of the substrate below. While the microstructure and pore distribution near the stop/restart area changes, this modified process does not induce the development of unusual features, such as an inhomogeneous microstructure or irregular pore distribution in the substrate. An analysis of the stiffness and hardness values of the nano-indented steel also reveals very little change at the joint of the stop/restart area. Further, we discuss the possible and effective follow-up actions of stopping and subsequently restarting the SLM process.
        4,000원
        2.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the high-temperature oxidation properties of austenitic 316L stainless steel manufactured by laser powder bed fusion (LPBF) is investigated and compared with conventional 316L manufactured by hot rolling (HR). The initial microstructure of LPBF-SS316L exhibits a molten pool ~100 μm in size and grains grown along the building direction. Isotropic grains (~35 μm) are detected in the HR-SS316L. In high-temperature oxidation tests performed at 700oC and 900oC, LPBF-SS316L demonstrates slightly superior high-temperature oxidation resistance compared to HR-SS316L. After the initial oxidation at 700oC, shown as an increase in weight, almost no further oxidation is observed for both materials. At 900oC, the oxidation weight displays a parabolic trend and both materials exhibit similar behavior. However, at 1100oC, LPBF-SS316L oxidizes in a parabolic manner, but HR-SS316L shows a breakaway oxidation behavior. The oxide layers of LPBF-SS316L and HR-SS316L are mainly composed of Cr2O3, Febased oxides, and spinel phases. In LPBF-SS316L, a uniform Cr depletion region is observed, whereas a Cr depletion region appears at the grain boundary in HR-SS316L. It is evident from the results that the microstructure and the hightemperature oxidation characteristics and behavior are related.
        4,000원
        3.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        스테인레스 스틸에 대한 합성된 폴리우레탄-에폭시 수지의 기계적 특성은 SEM, FT-IR, 인장특성, 그리고 EIS에 의한 특정질량손실량, 입도분석 등에 의해 물성을 측정하였다. 친환경적인 NATM 도료에 관한 관심이 고조됨에 따라 스테인레스 등의 금속에 코팅하는 무용제 도료를 합성하였다. 폴리올, IPDI, 충진제, 실리콘 계면활성제, 촉매 등이 함유된 기존 중방식수지보다 폴리올, MDI, 충진제, 실리콘 계면활성제, 촉매가 함유되어 합성된 중방식수지의 도료가 온도변화에 따른 인장강도가 증가하였고, 전해성이 높은 용액 속에서 저헝력이 크게 측정되었으며, 내구력과 강도가 양호하였다. 견고한 NATM 수지의 기계적 특성은 가교와 부식환경의 차단력이 증가함에 따라 강도가 증가하였다. 결론적으로 중방식의 가교된 미세조직은 방청코팅이 어려운 스테인레스 스틸 같은 금속물질 코팅에도 좋은 실험 결과를 보여주었다.
        4,000원
        4.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        스테인레스 스틸에 대한 합성된 폴리우레탄-에폭시 수지의 기계적 특성은 SEM, FT-IR, 인장특성, 그리고 EIS에 의한 특정질량손실량, 입도분석 등에 의해 물성을 측정하였다. 친환경적인 중방식 도료에 관한 관심이 고조됨에 따라 스테인레스 등의 금속에 코팅하는 무용제 도료를 합성하였다. 폴리올, IPDI, 충진제, 실리콘 계면활성제, 촉매 등이 함유된 기존 중방식수지보다 폴리올, MDI, 충진제, 실리콘 계면활성제, 촉매가 함유되어 합성된 중방식수지의 도료가 온도변화에 따른 인장강도가 증가하였고, 전해성이 높은 용액 속에서 저헝력이 크게 측정되었으며, 내구력과 강도가 양호하였다. 견고한 중방 식수지의 기계적 특성은 가교와 부식환경의 차단력이 증가함에 따라 강도가 증가하였다. 결론적으로 중방식의 가교된 미세조직은 방청코팅이 어려운 스테인레스 스틸 같은 금속물질 코팅에도 좋은 실험결과를 보여주었다.
        4,000원
        5.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Selective laser melting (SLM), a type of additive manufacturing (AM) technology, leads a global manufacturing trend by enabling the design of geometrically complex products with topology optimization for optimized performance. Using this method, three-dimensional (3D) computer-aided design (CAD) data components can be built up directly in a layer-by-layer fashion using a high-energy laser beam for the selective melting and rapid solidification of thin layers of metallic powders. Although there are considerable expectations that this novel process will overcome many traditional manufacturing process limits, some issues still exist in applying the SLM process to diverse metallic materials, particularly regarding the formation of porosity. This is a major processing-induced phenomenon, and frequently observed in almost all SLM-processed metallic components. In this study, we investigate the mechanical anisotropy of SLM-produced 316L stainless steel based on microstructural factors and highly-oriented porosity. Tensile tests are performed to investigate the microstructure and porosity effects on mechanical anisotropy in terms of both strength and ductility.
        4,000원
        6.
        2017.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Evaluation of the durability and stability of materials used in power plants is of great importance because parts or components for turbines, heat exchangers and compressors are often exposed to extreme environments such as high temperature and pressure. In this work, high-temperature corrosion behavior of 316 L stainless steel in a carbon dioxide environment was studied to examine the applicability of a material for a supercritical carbon dioxide Brayton cycle as the next generation power plant system. The specimens were exposed in a high-purity carbon dioxide environment at temperatures ranging from 500 to 800 oC during 1000 hours. The features of the corroded products were examined by optical microscope and scanning electron microscope, and the chemical compound was determined by x-ray photoelectron spectroscopy. The results show that while the 316 L stainless steel had good corrosion resistance in the range of 500-700 oC in the carbon dioxide environment, the corrosion resistance at 800 oC was very poor due to chipping the corroded products off, which resulted in a considerable loss in weight.
        4,000원
        7.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As wrought stainless steel, sintered stainless steel (STS) has excellent high-temperature anti-corrosion even at high temperature of 800ºC and exhibit corrosion resistance in air. The oxidation behavior and oxidation mechanism of the sintered 316L stainless was reported at the high temperature in our previous study. In this study, the effects of additives on high-temperature corrosion resistances were investigated above 800ºC at the various oxides (SiO2, Al2O3, MgO and Y2O3) added STS respectively as an oxidation inhibitor. The morphology of the oxide layers were observed by SEM and the oxides phase and composition were confirmed by XRD and EDX. As a result, the weight of STS 316L sintered body increased sharply at 1000oC and the relative density of specimen decreased as metallic oxide addition increased. Compared with STS 316L sintered parts, weight change ratio corresponding to different oxidation time at 900oC and 1000oC, decreased gradually with the addition of metallic oxide. The best corrosion resistance properties of STS could be improved in case of using Y2O3. The oxidation rate was diminished dramatically by suppression the peeling on oxide layers at Y2O3 added sintered stainless steel.
        4,000원
        8.
        2015.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, nitrogen ions were implanted into STS 316L austenitic stainless steel by plasma immersion ion implantation (PIII) to improve the corrosion resistance. The implantation of nitrogen ions was performed with bias voltages of −5, −10, −15, and −20 kV. The implantation time was 240 min and the implantation temperature was kept at room temperature. With nitrogen implantation, the corrosion resistance of 316 L improved in comparison with that of the bare steel. The effects of nitrogen ion implantation on the electrochemical corrosion behavior of the specimen were investigated by the potentiodynamic polarization test, which was conducted in a 0.5 M H2SO4 solution at 70 oC. The phase evolution and texture caused by the nitrogen ion implantation were analyzed by an X-ray diffractometer. It was demonstrated that the samples implanted at lower bias voltages, i.e., 5 kV and 10 kV, showed an expanded austenite phase, γN, and strong (111) texture morphology. Those samples exhibited a better corrosion resistance.
        4,000원
        10.
        2014.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study is experimentally investigated whether or not a relationship exists between the mechanical properties anddamping capacity of cold-rolled 316L stainless steel. Deformation-induced martensite was formed with surface relief anddirectionality. With the increasing degree of deformation, the volume fraction of ε- martensite increased, and then decreased,while α'- martensite increased rapidly. With an increasing degree of deformation, tensile strength was increased, and elongationwas decreased; however, damping capacity was increased, and then decreased. Tensile strength and elongation were affectedin the α'- martensite; hence, damping capacity was influenced greatly by ε- martensite. Thus, there was no proportionalrelationship between strength, elongation, and damping capacity.
        4,000원
        11.
        2013.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present work investigated the dispersion behavior of Y2O3 particles into AISI 316L SS manufactured using laser cladding technology. The starting particles were produced by high energy ball milling in 10 min for pre- alloying, which has a trapping effect and homogeneous dispersion of Y2O3 particles, followed by laser cladding using CO2 laser source. The phase and crystal structures of the cladded alloys were examined by XRD, and the cross section was characterized using SEM. The detailed microstructure was also studied through FE-TEM. The results clearly indi- cated that as the amount of Y2O3 increased, micro-sized defects consisted of coarse Y2O3 were increased. It was also revealed that homogeneously distributed spherical precipitates were amorphous silicon oxides containing yttrium. This study represents much to a new technology for the manufacture and maintenance of ODS alloys.
        4,000원
        12.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The coastal area of Republic of Korea is very clean compared to other countries. In this reason, west coastal area of our country is a good place for breeding up a fish such as shrimp. In winter season, the heating system is required for preventing shrimp death caused by freezing in the farm. The heater in the heating system for fishery's farm is operated very severe combating corrosion due to high accumulation by feeding material and high temperature in heated sea water. Almost all manufactured heaters of STS 316L and Ti material are scrapped every year due to heavy corrosion such a general and crevice corrosion. For comparing the general and galvanic corrosion in new heater material, the test material of Zirconium (Zr), Titanium (Ti) and STS 316L are tested by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), current density-time methods and microscopic examination in a 3.5% NaCl solution. The corrosion potential (Ecor) measured by potentiodynamic polarization for Zr, Ti and STS 316L reveals -198, -250 and -450mV, corrosion current density 0.5, 2.5 and 6.5μA/cm2 respectively. The film resistance measured by EIS are Zr 63,000, Ti 39,700 and 316L 3,150Ω, and the current of Zr-Ti couple is 0.03μA, whereas Zr-316L SS is 0.1μA. According to the result of this experiment in 3.5% NaCl solution, Zr is excellent corrosion resistance material than Ti and STS 316L.
        4,000원
        14.
        2010.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Cubic boron nitride (c-BN) is a promising material for use in many potential applications because of its outstanding physical properties such as high thermal stability, high abrasive wear resistance, and super hardness. Even though 316L austenitic stainless steel (STS) has poor wear resistance causing it to be toxic in the body due to wear and material chips, 316L STS has been used for implant biomaterials in orthopedics due to its good corrosion resistance and mechanical properties. Therefore, in the present study, c-BN films with a B4C layer were applied to a 316L STS specimen in order to improve its wear resistance. The deposition of the c-BN films was performed using an r.f. (13.56 MHz) magnetron sputtering system with a B4C target. The coating layers were characterized using XPS and SEM, and the mechanical properties were investigated using a nanoindenter. The friction coefficient of the c-BN coated 316L STS steel was obtained using a pin-on-disk according to the ASTM G163-99. The thickness of the obtained c-BN and B4C were about 220 nm and 630 nm, respectively. The high resolution XPS spectra analysis of B1s and N1s revealed that the c-BN film was mainly composed of sp3 BN bonds. The hardness and elastic modulus of the c-BN measured by the nanoindenter were 46.8 GPa and 345.7 GPa, respectively. The friction coefficient of the c-BN coated 316L STS was decreased from 3.5 to 1.6. The wear property of the c-BN coated 316L STS was enhanced by a factor of two.
        4,000원
        16.
        2002.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        SPS(Spark Plasma Sintering ) is known to be an excellent sintering method for porous materials. In the present work an attempt has been made of fabricating porous 316L Stainless steel with good mechanical properties by using controlled SPS process Porosity was 21%~53% at sintering temperature of ~100 The limit of porosity with available mechanical strength was 30% at given experimental conditions. Porosity can be controlled by manipulating the intial height of the compact by means of the supporter and punch length. The applied pressure can be exerted entirely upon the supporter, giving no influence on the specimen. The specimen is then able to be sintered pressurelessly. In this case porosity could be controlled from 38 to 45% with good mechanical strength at sintering temperature of 90. As the holding time increased, neck between the particles grew progressively, but shrinkage of the specimen did not occur, implying that the porosity remained constant during the whole sintering process.
        4,200원