This paper presents a literature review on the active technologies to regulate the levels of carbon dioxide and oxygen in Kimchi packaging. In this study, laser-etched pouches and O2 scavengers were used for Kimchi packaging, and the efficiency of each packaging technique to regulate the CO2 and O2 levels inside Kimchi packages was investigated. When Kimchi was packaged with a laser-etched pouch, the CO2 concentration in the sample with a high gas transmission rate was less than that in other pouches (p<0.05), and a low CO2 level had little effect on the expansion of the package volume. Kimchi treated with an O2 absorber exhibited a significantly lower (p<0.05) O2 concentration inside the packages relative to the control. A low O2 concentration inside the Kimchi package effectively inhibited the growth of total aerobic bacteria and lactic acid bacteria, as well as yeasts and molds on Kimchi. These results suggest that O2 absorbers have a positive effect on the microbial quality of Kimchi. Therefore, packaging in a laser-etched pouch and the use of an O2 scavenger could provide a novel packaging material for regulating the CO2 and O2 levels during Kimchi packaging.
Owing to their scalability, flexible operation, and long cycle life, vanadium redox flow batteries (VRFBs) have gained immense attention over the past few years. However, the VRFBs suffer from significant polarization, which decreases their cell efficiency. The activation polarization occurring during vanadium redox reactions greatly affects the overall performance of VRFBs. Therefore, it is imperative to develop electrodes with numerous catalytic sites and a long cycle life. In this study, we synthesized heteroatom-rich carbon-based freestanding papers (H-CFPs) by a facile dispersion and filtration process. The H-CFPs exhibited high specific surface area (~820 m2 g–1) along with a number of redox-active heteroatoms (such as oxygen and nitrogen) and showed high catalytic activity for vanadium redox reactions. The H-CFP electrodes showed excellent electrochemical performance. They showed low anodic and cathodic peak potential separation (ΔEp) values of ~120 mV (positive electrolyte) and ~124 mV (negative electrolyte) in cyclic voltammetry conducted at a scan rate of 5 mV s–1. Hence, the H-CFP-based VRFBs showed significantly reduced polarization.
A study on the decolorization method of salt-fermented anchovy sauce using activated carbon was carried out. The anchovy sauce filtered with a diatomaceous membrane after heating at 85℃ for 20 min was reacted with 3.0% (w/w) activated carbon with pH 4.5 at 55℃ for 2 hr. The color difference value and turbidity related to the decolorizing effect showed excellent improvement results with a difference of 23% and 88%, respectively. The overall taste and color preference of decolorized anchovy sauce were significantly increased in shrimp sauce by 0.4-0.5 points (p<0.05). In order to minimize the precipitation of amino acid during storage, 1% silicon dioxide or gelatin was mixed and filtered after the activated carbon reaction. Turbidity, as index of sedimentation, was improved by 15% at 30℃ for 2 weeks. The recycle system with activated carbon coated membrane filter reduced the processing time and cost on decolorization of anchovy sauce. When the concentrated anchovy sauce was recirculated, the amount of total protein as an indicator of taste compounds was increased by 125%, which is 1.8% compared to the conventional 0.8%, indicating that it is highly useful as a liquid seasoning.
In this study, several kinds of active carbons with high specific surface area and micro pore structure were prepared from the coconut shell charcoal using chemical activation method. The physical property of prepared active carbon was investigated by experimental variables such as activating chemical agents to char coal ratio, flow rate of inert gas and temperature. It was shown that chemical activation with KOH and NaOH was successfully able to make active carbons with high surface area of 1900~2500 m2/g and mean pore size of 1.85~2.32 nm. The coin cell using water-based binder in the electrolyte of LiPF6 dissolved in mixed organic solvents (EC:DMC:EMC=1:1:1 vol%) showed better capacity than that of oil-based binder. Also, it was found that the coin cell of water-based binder shows an improved cycling performance and coulombic efficiency.
The widespread occurrence of dissolved endocrine disrupting compounds(EDCs) and pharmaceutical active compounds(PhACs) in water sources is of concern due to their adverse effects. To remove these chemicals, adsorption of EDCs/PhACs on granular activated carbon(GAC) was investigated, and bisphenol A, carbamazepine, diclofenac, ibuprofen, and sulfamethoxazole were selected as commonly occurring EDCs/PhACs in the aquatic environment. Various adsorption isotherms were applied to evaluate compatability with each adsorption in the condition of single-solute. Removal difference between individual and competitive adsorption were investigated from the physicochemical properties of each adsorbate. Hydrophobicity interaction was the main adsorption mechanism in the single-solute adsorption with order of maximum adsorption capacity as bisphenol A ≻ carbamazepine ≻ sulfamethoxazole ≻ diclofenac ≻ ibuprofen, while both hydrophobicity and molecular size play significant roles in competitive adsorption. Adsorption kinetic was also controled by hydrophobicity of each adsorbate resulting in higher hydrophobicity allowed faster adsorption on available adsorption site on GAC. EDCs/PhACs adsorption on GAC was determined as an endothermic reaction resulting in better adsorption at higher temperature (40 ◦C) than lower temperature (10 ◦C#x25E6;C).
본 실험에서는 탈지 유채박 중 표면활성물질의 추출을 위 해 초임계 CO2 유체 추출법을 이용하였다. 추출 독립변수는 추출압력(150~350 bar), 온도(33~65℃), 보조용매량(ethanol, 150~250 g)으로 하였으며, D-optimal design에 의한 반응표면 분석을 통해 추출수율, 중성지질 분획, 인지질 분획, 당지질 분획 함량 등의 종속변수에 대한 최적 추출조건을 검토하였 다. 그 결과, 압력, 온도, 그리고 보조용매량이 증가함에 따라 종속변수 즉, 추출수율, 인지질, 당지질 함량 등은 증가하였 으나, 중성지질 함량은 감소하는 것으로 나타났으며, 그중 보 조용매량이 각 종속변수에 가장 큰 영향을 주는 것으로 나타 났다. 본 연구를 통해서 유도된 회귀식 모형은 실험을 통해 얻은 결과와 잘 일치하였으며, 초임계 CO2 유체 추출에 있어 서 종속변수인 추출수율, 인지질, 당지질 함량 등을 최대로 하면서 중성지질 함량을 최소로 하는 최적화된 추출조건은 추출압력 350 bar, 추출온도 65℃, 보조용매량 228.55 g으로 분석되었으며, 이 조건에서 추출수율은 5.98%, 추출물은 중 성지질 3.0%, 인지질 69.43%, 당지질 17.46% 등의 조성을 나 타낼 것으로 예측되었다.
This study was carried out to investigate the emulsifying properties of surface-active substances from defatted rapeseed cake by supercritical CO₂extraction. Based on the interfacial tension data, a supercritical fluid extract (SFE) with the lowest value of 14.16 mN/m was chosen for evaluation which was obtained from No. 2 extraction condition (150 bar, 65℃, 250 g). For emulsions with SFE, some physicochemical properties (i.e., fat globule size, creaming stability, zeta potential etc) were investigated according to changes in SFE concentration, pH, and NaCl addition in an emulsion. It was found that fat globule size was decreased with increasing SFE concentration in emulsion, with showing a critical value at 0.5 wt%, thereby resulting in less susceptibility to creaming behavior. The SFE emulsion also showed instability at acidic conditions (pH<7.0) as well as by NaCl addition. This was coincided with zeta potential data of emulsion. In addition, SSL (sodium stearoyl lactylate) found to be suitable as a co-surfactant, as it helped considerably in decreasing fat globule size in emulsions and its optimum concentration to be over 0.03 wt%, based on 0.1 wt% SFE in emulsion.
본 실험에서는 초임계 추출법을 이용하여 탈지미강으로부터 얻은 주요한 표면활성 물질 분획(3 fractions: 1-HS, 6-HS 및 18-HS)의 유화성질을 평가하였다. 유화성질의 평가는 표면활성분획을 이용하여 유화액을 제조한 후 이들의 여러 가지 물리화학적 성질(지방구 크기 및 변화, 크리밍 안정도, oil-off, 분산안정성 등)을 조사하였다. 그 결과 각 추출 분획을 이용하여 제조한 유화액은 서로 다른 물리화학적 특성을 나타내었는데, 그중 가장 작은 지방구 크기 특성을 나타낸 1-HS 유화액이 크리밍안정도, oil-off 및 분산안정성 측면에서 우수한 것으로 평가되었다. 또한 1-HS 추출물의 유화 기능성을 보강하기 위한 co-surfactant 검토 결과, GMS(glyceryl monostearate)를 추가적으로 첨가할 경우 1-HS 유화액의 지방구 크기가 현저하게 작아지는 것을 확인할 수 있었고, 적절한 첨가 농도는 0.05% 이상으로 확인되었다. 결론적으로 본 연구를 통하여 미강 추출물의 우수한 표면활성능을 확인할 수 있었으며, 이 천연의 표면활성물질은 초임계추출법을 이용하면 성공적으로 분리할 수 있는데, 향후 식품유화산업에서 이용될 수 있을 것으로 기대된다. 본 연구와 관련하여 다음의 실험 목표는 이 물질의 구성 성분분석 및 상업화 연구이다.
초임계 CO2유체를 이용하여 미강 중 표면활성물질을 추출하고 추출물의 표면활성능을 최적화하는 추출 조건을 반응표면분석법을 통해 조사하고자 하였다. 추출수율은 독립변수인 압력, 온도, 보조용매량이 많을수록 높았으며, 보조용매량이 추출수율에 가장 큰 영향을 주었다. 회귀분석을 통해서 얻은 최적 추출 조건은 추출압력 330 bar, 추출온도 65oC, 보조용매량 250 g이었다. 표면활성능 지표인 계면장력은 추출압력과 추출온도가 증가할수록 그리고 보조용매량이 높을수록 낮았으며, 추출수율과 마찬가지로 보조용매량이 계면장력에 가장 큰 영향을 주었지만 추출압력과 추출온도 등의 변수에 의한 영향은 비교적 적었다. 회귀분석을 통해서 얻은 최적 추출 조건(낮은 계면장력)은 추출압력 350 bar, 추출온도 65oC, 보조용매량 50 g이었다. 또한 D-optimal design을 통해 얻은 실험 결과를 바탕으로 회귀분석을 하였을 때 예측모델식은 실제 측정값과 비교해 높은 유의성을 나타내는 것으로 판단되었다. 보조용매량이 많을수록 극성 물질이 더 많이 추출되어 낮은 계면장력 값을 예상하였지만 실제 측정 결과 보조용매량이 가장 낮은 조건인 50 g에서 계면장력은 가장 낮게 측정되었다. 이의 규명을 위하여 TLC 및 HPLC 분석을 통한 추출물에 대한 성분 조사, 추출물을 이용한 유화액 제조, 유화액 특성 평가 등 추가 실험이 필요한 것으로 사료되었다.
The importance of indoor air environment gets higher because time of staying in indoor such as house or car become longer due to a change of the life pattern on human society. One of major pollution sources, VOCs or odor could be reduced or controlled by using adsorbent. It may be valuable for used catalyst to be applied in the adsorption of VOCs or odor. This could reduce the cost of adsorbent. In this work, the potential of used zeolites such as HZSM-5 catalyst and FCC catalyst as an adsorbent for removing acetaldehyde was investigated. Their adsorptive performances were compared with those of active carbon and MCM-41. The removal performace of used HZSM-5 was similar to that of active carbon due to its higher surface area. But used-FCC catalyst showed the lowest performance. These results suggest that used HZSM-5 can be applied to cheap adsorbent for acetaldehyde removal.
Samples of active carbon of 1150 m2/g surface area were impregnated with ammoniacal salts of copper, chromium and silver, with and without triethylenediamine. The samples of impregnated carbon were aged at 50℃, with and without 90% RH (relative humidity), for a little more than one year and chemically evaluated periodically. Initially copper (II) and chromium (VI) reduced very fast in the samples in humid atmosphere to the extent of 30% and 60% respectively in four months. These values were found to be unaffected by the presence of triethylenediamine (TEDA) indicating that the chemical did not retard the reduction process of chromium (VI) and copper (II). However, in the absence of humidity the reduction of the impregnants was significantly less (10-12%, w/w) in four months. It was quite evident; therefore, that the moisture was mainly responsible for the reduction of chromium (VI) and copper (II) species in impregnated carbons. The prolonged ageing of the samples with and without triethylenediamme after four months with and without humid atmosphere showed that the extent of reduction of chromium (VI) was very low, i.e. 5-10% and of copper (II) was 2-25%. Silver is not reduced due to carbon, as it remained unchanged in concentration on storage. The impregnated carbon samples (100 g) without triethylenediamine, which were aged at room temperature for 5 years in absence of humidity and unaged when evaluated against cyanogen chloride (CNCl) at a concentration of 4 mg/L and airflow rate of 30 lpm showed a high degree of protection (80- 110 minutes).
Performance of direct methanol fuel cell using high porous active carbon as an uncatalysed diffusion layer in anode (composite electrode) has been evaluated. Effects of porous active carbon in anode were investigated by galvanostatic method and Fourier Transform Infrared spectroscopy. The single cell was operated with 2.5 M methanol at temperature of 80-120℃ and showed performance of 210-510 mA/cm2 at 0.4V. By replacing conventional electrode with composite electrode, the increment of 290 mA/cm2 in current density was obtained at 90℃and 0.4V. The potential decay of the single cell was about 14.5% for 20 days operation.