In this study, numerical analysis was performed on a type IV hydrogen storage tank to analyze the temperature change of hydrogen inside the tank and the filling performance by changing the inlet nozzle outlet angle and the number of outlets. Considering the residual state of charge (SOC) inside the initial tank, the initial pressure was 10 MPa, and the temperature of hydrogen inside the tank and the SOC results were analyzed when hydrogen with a temperature of 233 K was introduced under the conditions of liner, wrap, and outside temperature of 298 K. The results of the analysis showed that the charging completion rate reached the charging limit pressure. The analysis showed that time of filling completion, when the filling limit pressure is reached, the SOC result is about 94% for all geometry change conditions, and the filling completion time increases by 5s as the number of outlets decreases. The temperature change of the wrap area at the end of filling is up to 3.6K, which shows that the outside air temperature has a negligible effect on the hydrogen temperature change inside the tank.
Hydraulic turbines can convert tidal current energy into electric energy, and the addition of a deflector cover to the turbine can improve the efficiency of the turbine's energy harvesting. The angle of the inlet section and the angle of the outlet section of the deflector will further affect the final energy-acquisition efficiency.A threedimensional numerical model for turbine flow field analysis is established, and the RNG k-ε turbulence model is selected by CFD method, and the best angles of inlet section and outlet section are analysed by the method of sliding mesh to obtain the best angle of inlet section and outlet section separately, and then three groups of angles are selected near the best angle of inlet section and outlet section to make orthogonal comparisons. The energy acquisition efficiency of the turbine is calculated at different angles of the inlet and outlet sections of the deflector, and the turbine streamline distribution, velocity and pressure maps are analysed with and without the deflector.The study shows that the deflector can play the role of convergence of the downstream flow, which can improve the efficiency of the turbine energy acquisition, and the maximum energy acquisition efficiency is at the inlet angle of 29° and the outlet angle of 40 °, and the maximum energy acquisition efficiency can be improved by about 32 percent.
In this work, we have designed a novel gas inlet structure for efficient usage of growth and doping precursors. Our previous gas injection configuration is that the gas is mixed to one pipe first, then divided into two pipes, and finally entered the chamber symmetrically above the substrate without a jet nozzle. The distance between gas inlet and substrate is about 14.75 cm. Our new design is to add a new tube in the center of the susceptor, and the distance between the new tube and substrate is about 0.5 cm. In this new design, different gas injection configurations have been planned such that the gas flow in the reactor aids the transport of reaction species toward the sample surface, expecting the utilization efficiency of the precursors being improved in this method. Experiments have shown that a high doping efficiency and fast growth could be achieved concurrently in diamond growth when methane and diborane come from this new inlet, demonstrating a successful implementation of the design to a diamond microwave plasma chemical vapor deposition system. Compared to our previous gas injection configuration, the growth rate increases by 15-fold and the boron concentration increases by ~ 10 times. COMSOL simulation has shown that surface reaction and precursor supply both have a change in determining the growth rate and doping concentration. The current results could be further applied to other dopants for solving the low doping efficiency problems in ultra-wide-band-gap semiconductor materials.
Bypass line과 Catalyst를 공간적으로 결합한 Bypass 일체형 탈질설비를 제안하였다. 탈질설비 내부에 설치되는 Bypass의 개폐장치 의 형태에 따른 Catalyst로의 유동 변화를 확인하기 위하여 상용프로그램인 Ansys Fluent를 사용하여 탈질설비를 모델링하고 시뮬레이션을 구성하였다. 탈질설비 내의 Catalyst로 인한 계산시간과 Mesh의 수를 줄이기 위해 Porous media방식으로 Catalyst를 모델링하였다. Catalyst로 의 입구각도와 Bypass 개폐장치의 크기를 변화시키면서 시뮬레이션을 수행하고 시뮬레이션의 결과로 Catalyst로의 유동 평균속도와 균일도의 변화를 확인하였다.
The effect of the change in air inflow velocity has been investigated at the opening of the malodor emission source to determine its influence on the Complex odor concentration. Both the Complex odor collection efficiency and concentrations were measured according to the change in airflow velocity. When the air inflow velocity was 0.1 m/s, it was observed that some of the generated gas streams were diffused to the outside due to low collection efficiency. In contrast, only the increased gas collection volume up to 0.5 m/s showed no substantial reduction of the Complex odor concentration, which indicates an increase in the size of the local exhaust system as well as the operation cost for the Complex odor control device. When the air inflow velocity reached 0.3 m/s, the Complex odor concentrations not only were the lowest, but the odorous gas could also be collected efficiently. The air inflow velocity at the opening of the malodor emission source was considered the key factor in determining the gas collection volume. Therefore, based on the results of this study, an optimal air inflow velocity might be suggestive to be 0.3 m/s.
In this study, the thermal behavior characteristics of flange case interior were analyzed by the numerical method. The boundary conditions at the inlet port of flange case were the heat flux and heat flux time. As the heat flux time at inlet of case increased, the temperature values gradually increased, and the degree of increase was very small. If the heat flux of the melted iron increases to 2,000,000 W/m2, the temperature change at the case interior will occur largely, causing heat deformation. As a result, in order to reduce thermal defects at the case interior, the heat flux and heat flux time of the melted iron should be set within 500,000 W/m2 and 5 seconds, respectively.
Bird screen meshes are installed at the air inlet and outlet ducts of spent fuel storage casks to inhibit the intrusion of debris from the external environment. The presence of these screens introduces an additional resistance to air flow through the ducts. In this study, a porous media model was developed to simplify the bird screen meshes. CFD analyses were used to derive and verify the flow resistance factors for the porous media model. Thermal analyses were carried out for concrete storage cask using the porous media model. Thermal tests were performed for concrete casks with bird screen meshes. The measured temperatures were compared with the analysis results for the porous model. The analysis results agreed well with the test results. The analysis temperatures were slightly higher than the test temperatures. Therefore, the reliability and conservatism of the analysis results for the porous model have been verified.
In a PEMFC gas channel with a trapezoidal cross-section, the effect of air and water inlet velocities on water removal characteristics is numerically studied via the volume of fluid(VOF) method. When the channel wall contact angle is 60 degrees, the air inlet velocities higher than 2.5 m/s are advantageous to obtain lower GDL surface water coverage ratio(WCR). The WCR increases as the wall contact angle increases to 90 or 120 degrees due to the relatively lower surface tension force. In overall, WCR decreases as the air inlet velocity increases and WCR increases as the water inlet velocity increases.
사이드 스트림 방식의 막 모듈을 대상으로 유입 유량을 수직으로 균등하게 분포시킬 수 있는 방안을 CFD로 설계한 결과, 내부 유입 수리구조에 유공 격벽 을 설치함으로써 모듈내로의 유입유량은 표준편차 기준으로 약 40% 정도 감소 됨을 확인하였다. 또한 CFD 결과를 검증하고 사이드 스트림 막 모듈의 편중된 오염의 원인을 조사하기 위해 수행된 입자영상유속 측정 결과로부터 유입구 반대편 유공에서 막 모듈 내부로 들어오는 수체의 유속이 상대적으로 커 수체의 모멘텀이 유입구 측벽에 강한 전단력을 발생하지만 유입구 반대 측벽에서는 사류가 형성됨을 확인하였다.
자동취수 물꼬와 토사유출저감 물꼬의 현장 적용성을 평가하기 위하여 2012년부터 2013년까지 2년 동안 취수량, 배출수량, 수질농도변화 그리고 생육 및 생산성을 조사하여 얻은 결과는 다음과 같다.
1. 관행 물꼬 관리 논과 자동취수 물꼬관리 논의 취수량은 각각 1,634 mm/yr와 922 mm/yr로 관측되었으며, 43.6%의 절약효과가 산정되어 용수량 절약에 효과적인 것으로 나타났다.
2. 자동취수 물꼬를 설치한 논의 배출수량이 관행 물꼬 관리 논에 비하여 38.6% 감소하였다.
3. 토사유출저감 물꼬를 설치한 논에서 SS는 22.8 ~ 75.0%, COD는 9.7 ~ 45.5%, TN은 0 ~ 64.5%, TP는 0 ~ 42.5%의 농도 개선효과가 있는 것으로 나타났다.
4. 개선된 물꼬 관리 논과 관행 물꼬 관리 논의 벼 생육과 생산량은 큰 차이가 없는 것으로 조사되었다.
이러한 연구결과로 볼 때 자동취수 물꼬와 토사유출저감 물꼬를 이용한 논의 물꼬 관리 시스템 개선은 생산량을 유지하며 수자원 및 물 환경을 보전하기 위한 좋은 시설로 판단된다.
A three dimensional numerical analysis was performed to study the effect of cathode inlet relative humidity on PEMFC performance characteristics. As cathode inlet relative humidity increases from 0 percent to 60 percent, the current density increases. Then, as cathode inlet relative humidity increases from 60 percent to 100 percent, the current density decreases. The two dimensional contour map analysis shows that the flooding phenomenon in cathode gas channel, gas diffusion layer, and catalyst layer leads to the decrease of current density.
In order to suggest the methodology for improving the equity of flow distribution in open channel with multiple outlet, CFD simulations were carried out for actual scale distribution channel being operated in domestic G_WTP(Water Treatment Plant). Also, before and after installing the longitudinal multi hole(diameter=250 mm, 116 holes) baffle suggested by this research, turbidity measurements data were collected for evaluating the effects of hydraulic modification for inlet flow equity. From the both results, total turbidity of settled water was lowered by 30 % and equity of flow distribution was improved about 60 % compared with before hydraulic structure modification.
In the paper an efficient numerical algorithm to predict the flow phenomena around the water-jet propulsion system was described. The potential-based flow analysis method was adopted to predict the velocity and the pressure on the inlet duct of the water-jet propulsion system. The method employed normal dipoles and source distributed on the solid surface such as the inlet duct and the tracked vehicle. The inlet duct and outlet open boundary surfaces were introduced where the sources and dipoles were distributed to define a closed boundary surface. The developed numerical algorithm was applied to a tracked vehicle propelled by the water-jet propulsion system with the different IVR(inlet velocity ratio). The results by the numerical analysis were compared with the experimental data in order to verify the feasibility of the proposed numerical algorithm.
A 2D axisymmetric numerical analysis was performed to study the characteristics of charge process inside solar thermal storage tank. The porosity and heat transfer coefficient of filler material as well as inlet velocity of heat transfer fluid are selected as simulation parameters. The porosity is varied as 0.2, 0.5, and 0.8 to account for the effect of filler granule geometry. Two levels of the heat transfer coefficient is adopted to assess the heat transfer between heat transfer fluid and filler material. The inlet velocity is varied as 0.00278, 0.0278, and 0.278m/s. As both of the porosity and the heat transfer coefficient increase, the discrepancy of the temperature distributions between the filler and heat transfer fluid decreases. As the inlet velocity increases, the penetration depth of the heat transfer fluid increases proportionally.
A three dimensional numerical analysis was performed to study the cooling performance of xEV battery module depending on cooling fluid inlet position. Depending on the inlet position from the top, case 1 (top inlet), case 2 (middle inlet), and case 3 (bottom inlet) are selected. For the case 1, the temperature of the battery near inlet was higher than that of the battery near outlet. For the case 2 and 3 the temperature of the battery near inlet was lower than that of the battery near outlet. From the analysis result, the cooling performance is higher in the order of case 2, case 3, and case 1.