According to acceptance of radioactive waste, homogeneous waste such as concentrated liquid waste and spent resin must be solidified to reduce radiological hazards and protect public health and the ecology. However, when using a High Integrity Containers (HIC), it is stated that homogeneous waste can be disposed of without applying the solidification test requirements. PCHIC, developed in korea, is composed of polyethylene (PE, interior), polymer concrete (PC, filler), and steel (external reinforcement). Currently, PC-HIC will be used as a packaging container for low-level liquid waste and spent resin waste. PE has a lower shielding efficiency compared to PC, but it offers the economic advantage of lower production costs. Therefore, cost savings can be expected if very low-level waste is packaged and disposed of HIC made only of PE materials (PEHIC). Despite the economical advantage of PE-HIC, PE-HIC has not been used domestically since NRC (Nuclear Regulatory Commission) reported that PE-HIC couldn’t meet the mechanical integrity criteria for radiation exsure. However, according to IAEA (International Atomic Energy Agency) research, it has been reported that mechanical integrity of PE-HIC is not affected when the absorbed dose is below 50 kGy. Therefore, in this study, Radiological impact of VLLW packaged into PE-HIC is evaluated to confirm that the absorbed dose is below 50 kGy, which then be used to assess feasibility of PE-HIC to be used as packaging and disposal container for radioactive waste. Radiological impact of VLLW packaged into PE-HIC is evaluated to confirm that the absorbed dose is below 50 kGy, which then be used to assess feasibility of PE-HIC to be used as packaging and disposal container for radioactive waste. The feasibility of using PE-HIC as packaging-disposal containers for radioactive waste will be reviewed. In this study, the radiation effects of only waste packaged in PE-HIC were considered, and additional assumptions are as follows. - Nuclides subject to radioactivity evaluation: Co-60, Cs-137 - Radioactivity concentration: very low-level radioactive wastel concentration limit - Target waste: waste resin - PE-HIC dimensions: outer diameter: 1,194 mm, height: 1,290 mm, and thickness 88 mm (PCHIC internal PE shape) Considering the above assumption, the exposure rate was evaluated using the MicroShield program. Since the density of PE-HIC in the MicroShield program was assumed as the density of air. The absorbed dose was recalculated through density correction of the derived exposure rate. As a result, it was confirmed that absorbed dose was about 2-3 mGy over 300 years. As a result of dose evaluation by MicroShield, it is judged that the mechanical integrity of PEHIC as an packaging of VLLW can be proved by confirming that the absorption dose irradiated to PE-HIC by internal waste is less than 50 kGy.
Extended PE double-walled pipe is a technology that hollow walled pipe widens hollow wall to the side extruded as a square and extrudes the form added with a stiffener of I-BEAM shape from the time of initial pressing out when producing existing double walled pipe. It can improve production speed 1.6 times faster. Plastic pipes used in study were PE pipe, especially HDPE pipe that is safe from reproduction of seaweed and bacteriomycota and can be used semi permanently as a few corrosion by corrosive substance existing in soil is made. The purpose of this study is to decrease production time and increase outputs by extending width of extruding side 1.5 times wider when producing PE double walled pipe through making existing double walled pipe into extended PE double wall. Also, it is aimed to develop an extended PE double-wall pipe that can eliminate causes of defect occurred by middle pipe wound around with drawing machine 90°when producing existing goods.
PE pipes have excellent mechanical and chemical properties and are widely used as water and sewer pipes. The pipes are cut and transported 6 meters in length to facilitate transport and operation. Transferred pipes are joined just before reclamation, resulting in long working hours and environmental contamination due to leakage due to poor coupling. Additional costs are also incurred for the re-work. In this study, we developed a device that can combine the PE pipes and Sockets. Structural safety was verified through structural analysis. In combination with socket and pipe, there is no defect in joint and watertight test shows no leakage.
PE(PolyEthylene) 재료를 활용한 해상부유 구조물은 바다, 강 또는 호수의 인근이나 수역 내에 일정한 공간 부를 형성하는 부유식 구조물로, 현재는 그 용도가 소형선박 계류장뿐만 아니라 양식장, 수상 펜션, 해상부교 등에 다양하게 활용되고 있다. 이 제품군의 특징은 유연성이 뛰어나고 재활용할 수 있으며, 내약품성, 내후/내식성이 우수하다. 기존의 PE 제품군을 활용한 부유식 플랫폼은 한 개의 브래킷에 한 개의 부력관을 체결하는 단순한 구조를 구성하였고, 이로 인하여 사용자가 용도 변경 및 사용환경이 변경될 때는 적용하는데 제한이 있었다. 이에 본 연구에서는 한 개의 브래킷에 다양한 크기를 갖는 부력 관을 체결할 수 있는 구조를 개발하고, 제품의 구조 안전성을 유한요소법을 활용하여 검증하였다. 구조해석 결과, 브래킷 하단에 지름 500mm 부력관 모델에서 충돌 하중에 대해 최대값을 나타내었으나, 허용기준을 만족하였다. 본 연구 결과를 기반으로 하여, 향후 다양한 형태의 부유체 플랫폼에 대한 구조 안전성 평가에 관한 연구가 가능하며, 관련 평가 기준에 대한 정립이 필요하다.
소수성 PE막은 높은 내화학성 및 상대적으로 낮은 가격으로 다양한 산업소재로 사용되고 있다. 이중 다공성 PE소재는 MBR, 2차전지 separator, MF등 다양한 분야에 사용되고 있으며, 목적에 따라 친수화가 필요로 한다. 하지만 PE의 화학적 안정적 구조로 친수화를 하기 위해서는 고에너지의 플라즈마처리가 필요로하지만, 다공성막의 경우 내부까지 친수화를 하기 어려워진다. 이를 해결하기 위해 간단한 용액 함침기술을 통하여 PE막을 친수화하였다. 친수화된 PE막에 수처리용 RO 및 NF막을 계면중합을 통하여 제작하였다. 본 기술을 간단한 화학적처리 방법을 통해 소수성 폴리올레핀의 적용분야 확장에 쉽게 접근할 수 있을 것으로 기대한다.
막증류(membrane distillation, MD)용 분리막의 장기 내구성능에 영향을 미치는 인자인 소수성 분리막의 젖음 현상에 대한 평가 지표로 사용되는 액체투과압력(liquid entry pressure, LEP) 측정 방법을 최적화하였다. PE (polyethylene) 분리막 및 PVDF (polyvinylidene di-fluoride) 중공사 분리막의 LEP를 측정하기 위하여 20 wt%의 고농도 염수를 제조하여 원수로 사용하고 투과수의 전도도를 모니터링하였다. PE와 PVDF 중공사 분리막의 신뢰성 있는 LEP 측정을 위해서는 5 min 이상의 holing time을 두고 주입 압력을 증가시켜야 하며, 증류수 수조의 물량대비 분리막의 면적비 또한 10 m2/m3 이상으로 부여되어야 함을 확인하였다.