Current seismic design provisions prohibit the use of a weak panel zone from using special moment frame (SMF) connections due to concerns that large deformations in these zones may lead to brittle connection failures. However, several experimental studies have demonstrated that moment connections with weak panel zones can exhibit adequate ductility and energy dissipation capacity for SMF connections. This study aims to investigate the impact of weak panel zones on the seismic performance of SMFs utilizing welded unreinforced flange-welded web (WUF-W) connections, as outlined in AISC 358-22. The analysis will consider both four-story and twelve-story SMFs. Each frame will be modeled with either strong or weak panel zones. The findings indicate that SMFs with weak panel zones demonstrate greater ductility and collapse strength compared to their counterparts with strong panel zones.
Permeable blocks are effective in improving urban water circulation and alleviating heat islands and floods. However, they cause environmental problems owing to their dependence on cement and natural aggregates. In this study, a permeable block was developed, and its performance was verified using ferronickel slag (FNS) as a substitute. The block applied with FNS met the KS F 4419 standard, and an average flexural strength of 4 MPa and a permeability coefficient of 0.1 mm/s or more were secured. This study confirmed that natural aggregate collection could be suppressed, resource efficiency could be improved, greenhouse gas reduction could be achieved, and high value-added industrial byproducts could be used.
This study investigates the seismic performance of beam-column connections using Thin-Walled Steel Composite (TSC) beams and Prestressed Reinforced Concrete (PSRC) columns. TSC beams are constructed from U-shaped thin steel plates that are filled with concrete, allowing for composite action with slabs through the use of shear connectors. They are widely applied in industrial buildings due to excellent strength, stiffness, and constructability. However, slender web plates are prone to local buckling, which may compromise their performance during seismic events. To mitigate this issue, internal supports have been introduced to enhance web stability and concrete confinement. Cyclic loading tests on three specimens—with and without internal supports—demonstrated that the supports increased moment capacity, improved energy dissipation, and effectively reduced buckling. Even slender sections demonstrated performance comparable to that of compact sections. All specimens reached peak strength at a 2.44% rotation angle, with damage localized near the supports. A practical connection detail was also proposed, taking into account constructability and structural reliability. The results provide valuable guidance for the seismic design of composite systems in large-scale structures.
The K2 tank not only has excellent mobility but also has excellent protection performance. Armor steel is used to provide structural protection, and the turret structure is made of rolled homogeneous armor (RHA) plates. Most processes for fabricating structures involve welding, but RHA steel has the problem of being susceptible to thermal deformation. To compensate for this, a plan to apply the bending method was considered. In this study, prior to applying the bending method to an actual vehicle, mechanical property evaluations were performed on materials, welding, and bending specimens. It has been proven that the bending method can achieve performance equivalent to or better than the welding method. The verification tests included hardness tests, tensile tests, fatigue tests, and impact tests. All tests except the impact test confirmed that the bending method was superior to the welding method. In the case of the impact test, the impact value of the bending method was lower, but it satisfied the standard with a value higher than the minimum requirement according to the standard, so it is judged that there will be no problem in applying the bending method.
Researchers have made significant strides in developing high-performance anode-supported tubular solid oxide fuel cells (SOFCs). These cells feature a thin, dense electrolyte made of Ba(Zr0.1Ce0.7Y0.2)O3-δ (BZCY). The fabrication process involved several key steps. First, fine BZCY powder was prepared using a co-precipitation method. Next, Ni-BZCY anode tubes were created via an extrusion process, boasting a 34 % porosity and an average pore size of 0.381 μm. To optimize cell performance, a Ni-BZCY/BZCY nanocomposite slurry was applied as an anode functional layer (AFL) using a dip-coating method. The BZCY electrolyte itself was then coated with a vacuum slurry coating, and finally, an LSCF-BZCY cathode was added, prepared with dip-coating methods. Impedance analysis, conducted under open-circuit conditions at 700 °C, revealed impressive electrical characteristics. The BZCY electrolyte showed an ohmic resistance of approximately 0.79 Ωcm-2 and a very low polarization resistance of about 0.036 Ωcm-2. When tested in a humidified hydrogen atmosphere (3 % H2O) at temperatures ranging from 600 °C to 700 °C, these tubular BZCY cells delivered outstanding power output. Specifically, they achieved a remarkable maximum power density of roughly 0.51 Wcm-2 at 700 °C. This research highlights the potential of these advanced tubular solid oxide fuel cells based on the BZCY as a proton conductor for efficient energy conversion.