This study was conducted to evaluate the market potential of 'Hwanggeumsantari', a new oyster mushroom variety developed in Gyeonggi Province in 2019, and to derive effective market entry strategies. To objectively assess the marketability of 'Hwanggeumsantari’ from various perspectives, a panel of 50 consumers was formed, and surveys and interviews were conducted. Additionally, two Focus Group Interviews were held with distributors in the agri-food sector. The results showed that potential consumers were positive about the color and texture of ‘Hwanggeumsantari', but expressed relatively less satisfaction with its shelf life and aroma. Distributors, through tow Focus Group Interviews, evaluated that the product had sufficient market competitiveness, but called for efforts to improve cultivation techniques and enhance price competitiveness. Based on the results of market evaluations by consumers and distributors, a SWOT analysis was conducted. The main strengths identified were its outstanding color and texture, while the main weakness was its freshness issue. Meanwhile, the growing demand for healthy foods and various online sales channels could provide market entry opportunities for ‘Hwanggeumsantari', but high sensitivity to price in the case of premium pricing could pose a threat. Consequently, a market entry strategy for ‘Hwanggeumsantari’ was proposed using a 4P mix approach based on the SWOT analysis results. The product strategy emphasized premium positioning, small packaging, and the development of packaging technology to maintain freshness. The price strategy proposed premium pricing and the operation of incentive programs. The distribution strategy suggested channel diversification, direct stores, or direct sales, while the promotion strategy emphasized storytelling and collaboration with influencers.
Oyster mushroom is one of the most widely cultivated and consumed mushrooms in Korea, and mechanization and automation of cultivation systems have enabled mass production. Many cultivars have been developed to replace the old ones such as ‘Suhan‘ and ‘Chunchuneutari 2 ho,‘ which have been cultivated for over 20 years. Among these, ‘Soltari‘ was developed in 2015. Although it has excellent quality, its cultivation is challenging and the productivity is somewhat lower. To address these issues, the Mushroom Division at the National Institute of Horticultural and Herbal Science selected the genetic resource KMCC05165 and attempted hybridization between monokaryons from KMCC05165 and ‘Soltari(KMCC04940)’. Through repeated cultivation tests and evaluation of fruiting body characteristics, the superior strain ‘Po-2019-smj22’ was selected and finally named ‘Otari‘. The optimal mycelial growth temperature of ‘Otari’ was between 25 and 30°C and optimal fruiting body growth temperature was between 13 and 18°C. Mycelial growth on PDA medium was best at 25°C, and at the same temperature, mycelial growth was similar across four media: PDA, MEA, MCM, and YM. In 1,100 mL bottle cultivation, the yield was approximately 174 g, which is about 5% higher than the control cultivar ‘Soltari‘, and the number of valid individuals was also higher at about 25. The diameter and height of the pileus were 29.8 mm and 17.6 mm, respectively, slightly smaller than ‘Soltari‘, and the stipe was thin and long with a thickness of 12.2 mm. Additionally, the pileus’ lightness index (L index) was 30.7, indicating a darker brown color compared to 'Soltari.' With excellent mycelial growth, ease of cultivation, and high yield, the new cultivar ‘Otari‘ is expected to be widely adopted by domestic oyster mushroom farms.
The oyster mushrooms have known to be a major product in Gyeonggi-do, with production accounting for 69% of the entire country. The ‘Daeseon’ cultivar, which has white and straight stem, was developed. This cultivar was developed by mating monokaryons isolated from the ‘Heuktari’ and ‘Hwaseong-2ho’ varieties. The optimum temperature for the mycelial growth was 26~32oC on PDA medium and that for the primordia formation and the growth of fruit body of ‘Daeseon’ was 16~20oC on sawdust media. It took 35 days to complete spawn running, 3 days for finish primordia formation, and 4 days for finish fruit body growth in the bottle culture. It has shallow funnel-shaped pileus and a white straight stipe. The yield per bottle was 201 g/1,100 ml and was 16% higher than that of control cultivar ‘Suhan-1ho’. Based on above results, we expect this cultivar to be suitable for small packaging.
We developed a new oyster mushroom cultivar named 'Dawon-tari', which has a longer stipe and higher yield than those of ‘sootari’.‘Dawon-tari’ was crossed by mating monokaryons isolated from ‘Sootari’ and ‘Daejang2ho’. The optimal temperature for mycelial growth was determined to be 20~25°C on potato dextrose agar medium, while the optimal temperatures for primordia formation and fruiting body growth were 15~17°C on a sawdust substrate. During bottle cultivation, the mycelial growth phase required approximately 26 days. Additionally, primordia formation required 5 days, and fruiting body growth took 4 days. The fruiting bodies exhibited a shallow funnel shape; were grayishbrown; and the stipes were characterized by a long, thin structure. The yield of fruiting bodies was 185 g per 1,100 mL bottle, which was 5% higher than that of ‘Sootari’.
In this study, we investigated the microbial community of oyster mushrooms at different growth stages at the species level. Gram-positive bacteria were predominant in the presterilized medium. On the other hand, Gram-negative bacteria were predominant in the culture-completed medium, post-harvest medium, and fruiting bodies. In addition, Pseudomonas tolaasii, which is known to cause disease in mushrooms, was confirmed in the cultured medium, post-harvest medium, and fruiting bodies, and it was determined that the mycelium culture stage was contaminated, and the reason why no disease occurred was Sphingobacterium psychroaquaticum. It was confirmed that this was because the growth of Pseudomonas tolaasii was suppressed by producing a component called tolacin. As a result of confirming the diversity of microorganisms, it was confirmed that the presterilization medium contains a variety of microorganisms compared to other growth stages, and the diversity decreases in the order of culture completion medium, fruiting body, and post-harvest medium. showed a trend. As a result of microbial similarity analysis, it was confirmed that the cultured medium and the post-harvest medium showed similar microbial communities, and in the case of fruiting bodies, there were some similarities but overall differences.
This study analyzed the effects of different nitrogen sources in substrate composition on the growth of Pleurotus ostreatus, as well as the subsequent changes in flavor and antioxidant activity. The T2, composed of poplar sawdust, beet pulp, cotton seed dregs, and cotton seed coat in a ratio of 40:20:20:20, exhibited the highest yield at 156.6 g. The total polyphenol content and ABTS and DPPH radical scavenging activities were 8.25 mg GAE/g, 70%, and 49%, respectively, showing higher radical scavenging activity compared to the Control and T1. Additionally, varying nitrogen content resulted in distinct aroma patterns and is presumed to influence taste profiles such as sourness, umami, and saltiness.
국내 큰느타리버섯은 매년 수출이 증가하고 있는 주요 신선 농산물 중 하나이다. 긴수염버섯파리는 농업, 특히 버섯생산에 피해를 주는 악 명높은 해충이다. 긴수염버섯파리의 유충은 주로 농작물에 직접 피해를 유발하고 성충은 몇몇 위험한 진균 병원체의 매개체 역할을 한다. 본 연구 에서는 전자빔, 엑스선, 그리고 감마선의 조사선량에 따른 긴수염버섯파리의 발육 및 생식에 미치는 영향을 평가했다. 또한 큰느타리버섯이 채워 진 박스 안에서 긴수염버섯파리를 제어할 수 있는 최적선량을 찾기 위해 방사선 및 에너지량에 따른 실증실험을 수행하였다. 그 결과 전자빔, 엑 스선, 감마선 모두 50 Gy에서 긴수염버섯파리의 발육 및 생식이 억제되었다. 또한 큰느타리버섯이 채워진 수출용 박스 상, 중, 하 위치에서 긴수 염버섯파리는 전자빔 150 Gy, 엑스선 100 Gy, 그리고 감마선 50 Gy에서 발육 및 생식을 억제하는 것으로 나타났다. 이러한 결과들은 수출 검역 통합관리 시스템 구축의 기초자료로 제공될 수 있다. 또한 농산물의 안전성 확보와 수출경쟁력 강화에 기여하리라 사료된다.
The characteristics and spore production of Gonji7ho, Bunhong, and Sunjung fruiting bodies were assessed at different growth stages. The shape of the Pleurotus species fruiting body starts out short and small, then takes on a typical mushroom shape as it grows. Gonji7ho has a long stalk, Bunhong has a short stalk and a wide cap, and Sunjung's cap and stalk dimensions are intermediate. Each variety displayed deep color at the beginning of growth but became steadily lighter with continued growth. The shape of the linkage between the mushroom stalk and cap changed from an initial central position to a lateral position after the growing stage. Gonji7ho cap diameter increased 7-fold from 15.5 mm (5 days of growth) to 37.9 mm (9 days of growth). Growth rates for each growth day measured using the growth percentage of the previous day were 285.5% (5 → 6th day), 182.2% (6 → 7th day), 129.4% (7 → 8th day), and 103.8% (8 → 9th day). This trend was also observed in Bunhong and Sunjung, but Bunhong’s growth rate was more rapid (4.9 fold on day 6, 2.7 fold on day 7) and continued to increase through day 9. Harvest yield, which is of greatest interest to farmers, displayed a similar trend spanning the growth period, as did cap diameter. Gonji7ho harvest yield increased rapidly until day 7 of growth (more than 177%), then growth slowed down beginning around day 8, and further decreased on day 9 (98%). Similar trends were observed in Bunhong and Sunjung. Bunhong showed characteristic rapid growth in harvest yield (4.9 fold compared to the previous day on day 6 and 2.7 fold on day 7), and the increase continued through day 9. A decrease in mushroom harvest yield commonly seen in the late growth stage is thought to be due to the death of some mushrooms and decomposition of cap tissue. Basidiospore content increased with number of growth days but decreased after day 8. Gonji7ho yielded the highest production on day 7 of growth, coinciding with harvest time, with 209,000,000 spores. This trend was also observed in Bunhong and Sunjung. These results will provide researchers with basal data and guide farmers in selecting the optimal harvest day.
Mushrooms have a unique taste and aroma, so in the processing of mushroom products with other ingredients, a separate pre-processing step is often taken to eliminate the mushroom aroma. In this study, we analyzed the changes in the concentration of volatile compounds according to drying conditions to promote the activation of processing using the fruiting bodies of yellow oyster mushrooms(Pleurotus citrinopileatus) and pink oyster mushrooms(P. djamor). The caps and stipes of yellow oyster and pink oyster mushrooms were separated and freeze-dried at -70oC for 120 hours. Subsequently, they were hot air-dried at temperatures of 40, 50, 60, and 70oC for 24, 24, 16, and 12 hours, respectively. The dried samples were pulverized and quantitatively analyzed by SPME-GC-MS. In the case of yellow oyster mushrooms, the concentration of t-2-nonenal in caps and stipes during freeze-drying was 164.43 g/g d.w. and 174.80 g/g d.w., respectively, whereas during hot air-drying, it significantly decreased to 0.35~3.41 g/g d.w. and 0.98~59.88 g/g d.w. In a similar manner, for pink oyster mushrooms, the concentration of 1-octen-3-ol during freeze-drying in caps and stipes was 31.05 g/g d.w. and 176.17 g/g d.w., respectively, whereas during hot air-drying, it significantly decreased to 1.59~9.66 g/g d.w. and 1.96~15.77 g/g d.w. Furthermore, most volatile compounds showed a tendency to decrease in concentration as the temperature during hot air-drying increased.
In this study, Pleurotus ostreatus No.42 was cultured in glucose-peptone-yeast-wheat bran medium using a previously reported novel rotary draft tube bioreactor. Versatile peroxidase (VP), a lignin-degrading enzyme, was isolated from a pellet-type mycelium culture grown in the medium for seven days. The VP was purified by sequentially applying ultra-filtration, DEAESepharose CL-6B column, and Mono Q column. SDS-PAGE analysis revealed the molecular weight of VP to be 36.4 KDa with an isoelectric point of 3.65. The amino acid sequence was confirmed as VTCATGQTT. The purified VP was observed to possess the property of not only oxidizing Mn ions but also decomposing veratryl alcohol, a non-phenolic compound. The catalytic ability of VP is a subject for future research.